STAUFF Filtration Technology offers a complete range of filtration products and services. This will provide the system designer or user with the highest level of contamination control demanded by today's most sophisticated applications. STAUFF Filtration Technology Products include Pressure Filters, Return Line Filters, Elements, Spin-On Filters, Suction Strainers and Filler Breathers for various hydraulic, lubrication and fuel oils. STAUFF has the technical expertise to provide superior filter element designs for the STAUFF original filter housings and $% \left(1\right) =\left(1\right) \left(1\right)$ also for the interchange element market. STAUFF manufactures more than 10000 different elements. Many of these are designed to fit into filter housings produced by other companies while maintaining or surpassing the original performance. A well-stocked warehouse guarantees the possibility of shortterm arrangements without their own storage. Therefore, we can react flexible for your specific needs. The "STAUFF Contamination Control Program" comprised the diagnostic services including fluid sampling and laser particle counting products for monitoring the system contamination level. In addition STAUFF offers a range of software solutions for element interchange and filter calculation. All products are subject to the audits in reference to international standards. This ensures a consistently high standard of qualitiy. Please do not hesitate to contact STAUFF for further details. # www.stauff.com # **Filtration Technology** | ndex | C2 | |-----------------------------|------| | Filtration Guidline | Ce | | Pressure Filters | C18 | | Return Line Filters | C57 | | Spin-On Filters | C132 | | Offline- and Bypass Filters | C153 | | Mobile Filter Systems | C182 | # ® **Pressure Filters** C39 C40 C41 C42 C45 C47 C47 C48 C49 C51 C54 C54 C55 C56 # **Filtration Guideline** | intiati | on duidenne | | | | | i i coouic i | |------------|--|-------------|-------------------|-----|---|-------------------------------------| | Introduct | iion | | C6 | | Valves
Technical Data
Order Code | HV-0 / HV-B / HV-R /
HV-N / HV-M | | Filtration | - Why? | | C7 | | Clogging Indicators Technical Data | Н | | Contamir | nation | | C7 | _ | Order Code
Dimensions | | | STAUFF F | ilter Components | | C9 | | Filter Elements
Technical Data
Order Code | SE | | Test Stan | dards and Oil Purity | | C10 | | Flow Characteristics Types SF / SF-TM / SF-SM / SFA | | | Short & C | curt: Filter Rating | | C11 | 1 | Pressure Filters Max. 345 bar / 5000 PSI Max. 380 I/min / 100 US GPM | SIF48 | | ß-Value a | and Separations Efficiency | | C11 | | Technical Data / Dimensions Pressure Filter - Order Code Filter Elements - Order Code | SIF48
RTE48 | | Filtration | Terminology | | C12 | | Clogging Indicators Technical Data / Dimensions | HI48 | | Choice of | Filters / Examples of Calculation | | C14 | | Order Code | | | Filter Sel | ection Software | | C15 | | Flow Characteristics Type SIF48 | 0405 | | | teplacement Filter Elements | | C16 | 9.1 | Medium Pressure Filters Max. 110 bar / 1600 PSI Max. 90 l/min / 25 US GPM Technical Data / Dimensions | SMPF | | Pressu | re Filters Overview | | C18 | U | Medium Pressure Filter - Order Code
Filter Elements - Order Code | SMPF
SME | | | Types SF / SF-TM / SF-SM / SFA | | 010 | | Clogging Indicators Visual Clogging Indicator | HIM-V | | | High Pressure Filters Max. 420 bar / 6000 PSI Max. 1320 I/min / 300 US GPM | SF | | | Visual-Electrical Clogging Indicator
Order Code | HIM-VE | | | Technical Data / Dimensions
High Pressure Filter - Order Code
Filter Elements - Order Code | SF
SE | C19
C22
C22 | | Flow Characteristics Type SMPF | | | | High Pressure Filters
Max. 315 bar / 4560 PSI
Max. 1320 I/min / 300 US GPM | SF-TM | | | | | | | Technical Data / Dimensions
High Pressure Filter - Order Code
Filter Elements - Order Code | SF-TM
SE | C23
C26
C26 | | | | | 3 | High Pressure Filters
Max. 315 bar / 4560 PSI
Max. 1320 l/min / 300 US GPM | SF-SM | | | | | | | Technical Data / Dimensions
High Pressure Filter - Order Code
Filter Elements - Order Code | SF-SM
SE | G27
G30
G30 | | | | | | High Pressure Filters Max. 315 bar / 4560 PSI Max. 30 I/min / 8 US GPM | SFZ | 200 | | | | | U | Technical Data / Dimensions High Pressure Filter - Order Code Filter Elements - Order Code | SFZ
SE | C32
C34
C34 | | | | | | Medium Pressure Filters
Max. 160 bar / 2320 PSI
Max. 240 l/min / 70 US GPM | SFA | | | | | | | Technical Data / Dimensions
Medium Pressure Filter - Order Code
Filter Elements - Order Code | SFA
SE | C35
C38
C38 | | | | #### **Return Line Filter Return Line Filters** | W-self | Return Line Filters
Max. 14 bar / 200 PSI
Max. 7000 I/min / 1850 US GPM | SRFL-S / SRFL-D | · | | Return Line Filter Max. 25 bar / 365 PSI Max. 1135 I/min / 300 US GPM | RFS | | |--------|---|-----------------|------------|---------|--|------------------|--------------| | 1 | Technical Data / Dimensions
Return Line Filter - Order Code | SRFL-S / D | C57
C68 | | Technical Data / Dimensions
Return Line Filter - Order Code | RFS | C91
C94 | | | Filter Elements - Order Code | RE | C68 | | Filter Elements - Order Code | RE | C94 | | | Filter Elements Description Order Code | RE | C69 | | Options - Clogging Indicators Visual Clogging Indicator Electrical Clogging Switch | | C95 | | | Differential Pressure Switch with
Visual Gauge Indicator | | C69 @ | | Replacement Filter Elements Description Order Code | RE | C95 | | | Flow Characteristics Type SRFL-S / D | | C70 | | Flow Characteristics Type RFS | | C96 | | | Return Line Filters Max. 16 bar / 232 PSI | RF | | ~ | Return Line Filters | RIF300 | | | | Max. 500 l/min / 130 US GPM | | | | Max. 34,5 bar / 500 PSI | 1111 300 | | | | Technical Data / Dimensions | | C71 | # | Max. 1135 I/min / 300 US GPM | | | | | Return Line Filter - Order Code | RF | C74 | " | Technical Data / Dimensions | | C99 | | | Filter Elements - Order Code | RE | C74 | W | Return Line Filter - Order Code
Filter Elements - Order Code | RIF300
SP | C101
C101 | | | Options - Clogging Indicators | | C75 | No. | 2.0 | . | 0.0. | | | Visual Clogging Indicator | | | | Clogging Indicators | | C102 | | | Electrical Clogging Switch | | | | Visual Clogging Indicator | | | | | Filter Bowl with Threaded Connection | | | | Visual-Electrical Clogging Indicator | | | | | Leakage Oil Connection | | | | Order Code | | | | | Filter Bowl with Threaded Connection | | | | 01401 0040 | | | | | and Diffuser | | | | Flow Characteristics | | C103 | | | and Diriuser | | | | Type RIF300 | | 0103 | | | Flow Observatoristics | | C76 | | Type KIF300 | | | | | Flow Characteristics | | U/0 | | Deturn Line Filters | DIE40 | | | | Type RF | | | | Return Line Filters | RIF48 | | | | | | | | Max. 20 bar / 300 PSI | | | | - | Return Line Filters | RFA | | | Max. 380 I/min / 100 US GPM | | | | | Max. 25 bar / 365 PSI | | | | Technical Data / Dimensions | | C104 | | | Max. 110 I/min / 30 US GPM | | | | Return Line Filter - Order Code | RIF48 | C106 | | 100 | Technical Data / Dimensions | | C79 | | Filter Elements - Order Code | RTE48 | C106 | | - | Return Line Filter - Order Code | RFA | C82 | | | | | | 100 | Filter Elements - Order Code | RE | C82 | | Clogging Indicators | HI48 | C107 | | | | | | | Technical Data / Dimensions | | | | | Options - Clogging Indicators | | C83 | | Order Code | | | | | Visual Clogging Indicator | | | | Flore Observatoristics | | 0400 | | | Electrical Clogging Switch | | | | Flow Characteristics | | C108 | | | Filter Bowl with Threaded Connection | | | | Type RIF48 | | | | | Leakage Oil Connection | | | | | | | | | Filter Bowl with Threaded Connection | | - | | Return Line Filters | RTF10/25 | | | | and Diffuser | | | | Max. 6,9 bar / 100 PSI | | | | | | | | pun. P | Max. 95 I/min / 25 US GPM | | | | | Flow Characteristics | | C84 | 0 | Technical Data / Dimensions | | C109 | | | Type RFA | | | | Return Line Filter - Order Code | RTF10/25 | C112 | | | | | | | Filter Elements - Order Code | RTE | C112 | | 1 | Return Line Filters | RFB | | | | | | | 1 | Max. 10 bar / 145 PSI | | | | Return Line Filters | RTF20 | | | الطندي | Max. 185 I/min / 52 US GPM | | 3 | 0 | Max. 6,9 bar / 100 PSI | | | | 1 | Technical Data / Dimensions | | C85 | | Max. 115 I/min / 30 US GPM | | | | | Return Line Filter - Order Code | RFB | C88 | | Technical Data / Dimensions | | C113 | | | Filter Elements - Order Code | RE | C88 | | Return Line Filter - Order Code | RTF20 | C116 | | | Air Filter Elements - Order Code | REA | C88 | 7 | Filter Elements - Order Code | RTE | C116 | | 100 | | | | | Air Filter Elements - Order Code | RTEA | C116 | | | Options - Clogging Indicators | | C89 | | | - - - | | | | Visual Clogging Indicator | | | | Return Line Filters | RTF40 | | | | Electrical Clogging Switch | | 36 | and the | Max. 6,9 bar / 100 PSI | - | | | | Air Filter Element | | | - | Max. 378 I/min / 100 US GPM | | | | | Filter Bowl with Threaded Connection | | | | Technical Data / Dimensions | | C117 | | | The Down with Threaten Confidential | | 1 | | Return Line Filter - Order Code | RTF40 | C120 | | | Flow Characteristics | | con | J. | | | | | | | | C90 | | Filter Elements - Order Code | RTE | C120 | | | Type RFB | | | | | | | # ® # Return I ine Filters | Return | Line Filters | | | | | Spin-On Fi | lters | |--------
--|----------------------|----------------------|-------|--|-------------------------------------|-------| | 2 | Return Line Filters Max. 6,9 bar / 100 PSI Max. 379 l/min / 100 US GPM Technical Data / Dimensions | RTF50 | C121 | | Introduction
Technical Data
Private Labelling | | C132 | | Ψ | Return Line Filter - Order Code
Filter Elements - Order Code | RTF50
RTE | C124
C124 | | Quick Reference Guide
Spin-On Filter Heads
Spin-On Filter Elements | | C133 | | | Return Line Filters Max. 10 bar / 145 PSI Max. 500 l/min / 132 GPM Technical Data / Dimensions Return Line Filter - Order Code Filter Elements - Order Code | RTF-N
RTF-N
RA | C125
C128
C128 | 48 | Spin-On Filter Heads Max. 14 bar / 200 PSI Max. 26 I/min / 7 US GPM Technical Data / Dimensions Order Code | SLF-02/03/04 | C134 | | | Flow Characteristics Type RTF Clogging Indicators Visual Clogging Indicator | | C129
C131 | | Spin-On Filter Heads Max. 14 bar / 200 PSI Max. 90 l/min / 25 US GPM Technical Data / Dimensions Order Code | SAF-05 / 06 / 07 / 11 | C135 | | | Electrical Clogging Indicator
Order Code / Dimensions | | 0.01 | | Spin-On Filter Heads Max. 14 bar / 200 PSI Max. 128 I/min / 34 US GPM Technical Data / Dimensions Order Code | SAF-10 / 13 | C136 | | | | | | nie i | Spin-On Filter Heads Max. 12 bar / 174 PSI Max. 90 I/min / 25 US GPM Technical Data / Dimensions Order Code | SSF-12 | C137 | | | | | | | Spin-On Filter Heads Max. 14 bar / 200 PSI Max. 225 I/min / 60 US GPM Technical Data / Dimensions Order Code | SSF-100 / 120 / 120L /
130 / 160 | C138 | | | | | | | Spin-On Filter Heads Max. 14 bar / 200 PSI Max. 300 l/min / 80 US GPM Technical Data / Dimensions Order Code | SSF-150 / 180 | C139 | | | | | | | Double Spin-On Filter Heads Max. 12 bar / 174 PSI Max. 454 l/min / 120 US GPM Technical Data / Dimensions Order Code | SSF-24N / 24S | C140 | | | | | | | Double Spin-On Filter Heads
Max. 12 bar / 174 PSI
Max. 454 I/min / 120 US GPM
Technical Data / Dimensions
Order Code | SSF-25 | C141 | Tank Top Spin-On Filter Heads Max. 7 bar / 100 PSI Max. 200 I/min / 53 US GPM Tank Top Spin-On Filter Heads Max. 7 bar / 100 PSI Max. 75 I/min / 20 US GPM Technical Data / Dimensions SSFT-12 SSFT-20 C142 C143 Technical Data / Dimensions Order Code Order Code # Spin-On-Filter | 0 | Spin-On Filter Elements
Technical Data
Dimensions | SFC-35 / 36
SFCT-35 / 36 | C144 | |-------|--|--|------| | | Spin-On Filter Elements
Technical Data
Dimensions | SFC-57 / 58
SFCT-57 / 58 | C145 | | E OF | Spin-On Filter Elements
Technical Data
Dimensions | SF63 | C146 | | O III | Spin-On Filter Elements
Technical Data
Dimensions | SF65 | C147 | | | Spin-On Filter Elements
Technical Data
Dimensions | SF67 | C148 | | | Flow Characteristics | SFC/SFCT-35 / 36
SFC/SFCT-57 / 58
SF63 | C149 | | | Flow Characteristics | SF65 | C150 | | | Flow Characteristics | SF67 | C151 | | | Clogging Indicators
Technical Data | SIS / GV / SIM / CI
SIE-NO/NC / EPS/EVS | C152 | # Offline- and Bypass Filters | | Uttline | - and Bypass Fil | ters | |--------|---|-------------------|----------------------| | | Overview Description Technical Data | | C153 | | | STAUFF System | | C154 | | | Offline Filters Overview Dimensions Technical Data | OLS | C155
C156 | | 100 | Offline Filter - Order Code
Filter Elements - Order Code | OLS
SRM | C160 | | Tie | Water Absorbing Offline Filters Overview Dimensions Technical Data | OLSW | C161
C162 | | | Water Absorbing Offline Filter- Order Code
Filter Elements - Order Code
Pre-Filter Elements - Order Code | OLSW
SRM
SF | C166 | | | Heated Offline Filters Overview Dimensions Technical Data | OLSH | C167
C168 | | Mint | Heated Offline Filter - Order Code
Filter Elements - Order Code | OLSH
SRM | C169 | | ANTE - | Bypass Filters Overview Dimensions Technical Data | BPS | C171
C172 | | | Bypass Filter - Order Code Filter Elements - Order Code Mounting Options Hydraulic Symbols / Flow Characteristics | BPS
SRM | C173
C174
C175 | | | Bypass Lube-Oil Filter
Overview
Dimensions
Technical Data | BPLS | C176
C177 | | | Bypass Lube-Oil Filter - Order Code
Filter Elements - Order Code | BPLS
SRM | C177 | | | Mini Water Vac
Overview
Dimensions
Technical Data | SMWV | C178 | | Sept. | Mini Water Vac - Order Code | SMWV | C179 | | J | Replacement Filter Elements Description Technical Data | SRM | C180
C181 | # **Mobile Filter Systems** | Portable Filter Cart
Technical Data
Dimensions | SPFC | C182
C183 | |---|------|--------------| | Portable Filter Cart - Smart Cart
Technical Data / Dimensions | SPFC | C184 | | Portable Filter Cart - Order Code | | C186 | | Compact Portable Filter Cart
Technical Data
Dimensions / Order Code | SCFC | C187
C188 | | STAUFF Mobile Filter Systems | | C189 | # Introduction STAUFF Filtration Technology offers two publications with knowledge and expertise about contamination in hydraulic fluids, filter types and assistance for selecting the right filter for the applications: # A. The compact "Filtration Guideline" Please have a look at the following pages. # B. SCCP – STAUFF Contamination Control Program A comprehensive guideline (only available in English language) # Filtration - Why? Good hydraulic filtration is gaining more and more importance in the use of hydraulic systems. Reducing contamination in the hydraulic system will reduce the wear of the components and thus extend the service life of the machine. This will prevent production downtime and lower the overall production costs. Right from the beginning, there is contamination in a new hydraulic system, which reduces the service life of the system and its components such as valves and cylinders without any or with inadequate filtration. This built-in dirt is created during the manufacturing of the components and mainly consists of coarse particles. In addition to the contamination that arises during operation of the system, e.g. abrasive wear, dirt particles can also get into the system when it is filled with hydraulic oil. This is called ingress contamination. Choosing the right filter contributes significantly to prevent the dangers mentioned above thereby ensuring efficient operation even after many years. #### **Reduction of Contamination** - Extension of service life - Extension of maintenance intervals - Reduction of machine downtime - Reduction of environmental pollution #### ► Cost savings for the user #### Contamination #### Particle Sizes (Selection) - $\,\blacksquare\,$ 100 μm table salt, fine sand - 75 µm diameter of a human hair - 60 µm flower pollen - 50 µm fog - $\, \blacksquare \,$ 30 μm (from approx.) resolution of the human eye - 15 μm fine particles - \blacksquare 7 μm red blood cells - 2 µm bacteria - 1 µm layer of lubricating film (for comparison) ### **Type of Contamination** The most frequent ones are: - Solid particles - Free and dissolved water - Non-dissolved air A majority of the contamination can be removed with filtration. #### Origin of Contamination The main cause of failures and downtimes is dirt in the hydraulic system. Failure analysis indicate that 70% of the failures are caused by faults in the hydraulic system. 90% of them are caused by impurities in the hydraulic oil. #### **Sources of External Contamination** - · Filling and refilling the hydraulic tank - Inadequately dimensioned breathers - Damaged tank seals - Replacement of hydraulic lines and components (pumps, cylinders) - Impurities in the air #### **Types of Internal Contamination** - Contamination on/in the components caused by the manufacturing process (e.g. chips) - Contamination on the components caused by the installation of the components #### **Sources of Internal Contamination** - Disintegration of particles from high pressure changes and tension on the surface of hydraulic components (e.g. cavitation) - Material erosion that occurs at places in the hydraulic units due to the impact of pressurised liquid at high speeds (erosion wear) # **STAUFF Filter Components** Pressure Filters 7 are placed behind the pump and clean the hydraulic oil before it flows through down-stream components like valves, cylinders and so on. The main reason for pressure filtration is the protection of downstream, sensitive components. Eroded particles from the pump are immediately filtered out of the hydraulic oil. Besides working as a protection filter, pressure filters also help to maintain the required purity class. Because it is placed right behind the pump, a Pressure Filter has to withstand the maximum system pressure. The filter element in the pressure filter also has to withstand the loads and is more intricately constructed, for example as a Return Line Filters element. Return Line Filters 4 are installed in the return line, on top of or within the oil tank. They filter the hydraulic oil before it flows back into the reservoir. This ensures that contamination arising in the components does not get into the tank. Return Line Filters maintain the targeted purity class like pressure filters. However, because of their arrangement, they do not fulfil the additional function of a protection filter. In contrast to a pressure filter, it only has to withstand low pressure levels. Diffusers 5
are used in combination with Return Line Filters and ensure that the returning oil flow is settled before it reaches the oil tank thereby preventing foaming and re-suspension of deposited dirt. The job of Suction Strainers 6 is mainly to provide functional protection of the downstream pumps in the circulation. Suction Strainers always have to be provided if the risk of pump damage from coarse impurities is particularly high. This risk exists if impurities are collected in the tank and if they can't be filtered out afterwards. Suction Strainers are coarse filter elements with a micron rating that is usually bigger than 100 $\mu\text{m}.$ Filler Breathers 3 / 9 are mounted on the oil tank and prevent the entry of dirt from the surroundings during tank breathing. They should be chosen with a filter unit that is similar to the working filter (Pressure Filter, Return Line Filter). The replacement cycles of filter inserts is highly dependent on the surrounding conditions of the hydraulic system. Another variant of the breather is the Desiccant Air Breather 8 . The additional function of this filter is dehumidification of the inflowing air with a special silicate gel. Offline / Bypass Filters (0) are not part of the main hydraulic system. They are supplementary to achieve the best possible filtration results. Because of the high efficiency of the Offline / Bypass Filters, purity levels are reached that cannot be achieved with conventional main filter systems. Offline Filters work with an integrated motor/pump unit that draws in the fluid from the system, filters it and then feeds it back into the tank. Because the offline filter is independent from the hydraulic main circuit, i.e. it can still be operated if the hydraulic system is switched off, it is used in practice for continuous cleaning of the tank. Bypass Filters on the other hand use the existing system pressure to draw a small volumetric flow out of the hydraulic system for filtration. They are only active while the unit is in operation. Another mobile variant of the bypass filter is the Mobile Filter System 2. STAUFF provides a complete range of Spin-On Filters (2) which can be used either as suction filters or as return line filters for low pressure applications. # **Test Standards and Oil Purity** #### **Definition of the Required Micron Rating** Essentially, the components found in the hydraulic system determine the micron rating of the filtration system. To guarantee a reliable mode of operation over the years, it is mandatory to maintain the optimum oil purity class for specific components. The most sensitive component determines the choice of filter material and micron rating. To determine the oil purity according to ISO 4406 (1999), a laser particle counter is used to count particles that are >4 $\mu m_{(c)}$, >6 $\mu m_{(c)}$ and >14 $\mu m_{(c)}$ in 100 ml of hydraulic oil. The number of particles is then assigned a classification number (e.g. 20/18/15) that then corresponds to the ISO purity class. Please note here that the number of particles doubles for the next higher class. The cleanliness level that has to be achieved is an important criterion for choosing the right filtration system. # STAUFF Filter Elements are Subject to the Following Test Methods ISO 2941 Collapse and burst resistance ISO 2942 Verification of fabrication integrity (bubble point test) ISO 2943 Compatibility with hydraulic media ISO 3723 End load test ISO 3724 Flow fatigue characteristics ISO 3968 Flow characteristics ■ ISO 16889 Filtration performance test (multi-pass method) | | f particles
ml fluid | Classification numbers
ISO 4406 (1999) | | | | | | |-----------|-------------------------|---|-----------------------|------------------------|--|--|--| | More than | Less than | > 4 µm _(c) | > 6 µm _(c) | > 14 µm _(c) | | | | | 8000000 | 16000000 | 24 | 24 | 24 | | | | | 4000000 | 8000000 | 23 | 23 | 23 | | | | | 2000000 | 4000000 | 22 | 22 | 22 | | | | | 1000000 | 2000000 | 21 | 21 | 21 | | | | | 500000 | 1000000 | 20 | 20 20 | | | | | | 250000 | 500000 | 19 | 19 | 19 | | | | | 130000 | 250000 | 18 | 18 | 18 | | | | | 64000 | 130000 | 17 | 17 | 17 | | | | | 32000 | 64000 | 16 | 16 | 16 | | | | | 16000 | 32000 | 15 | 15 | 15 | | | | | 8000 | 16000 | 14 14 | | 14 | | | | | 4000 | 8000 | 13 | 13 | 13 | | | | | 2000 | 4000 | 12 | 12 | 12 | | | | STAUFF Laser Particle Counter LasPaC-II and Bottle Sampler #### **Short & Curt: Filter Rating** (For exact recommendation see SCCP - STAUFF Contamination Control Program see page C15.) | Туре | Component | ISO 4406 Code | Recommended
Filter Rating | |----------|--|---------------|------------------------------| | Pump | Piston Pump (Slow Speed, Inline) | 22/20/16 | 20 μm | | | Gear Pump | 19/17/15 | 20 μm | | Pump | Vane Pump | 18/16/14 | 5 μm | | | Piston Pump (High Speed, Variable) | 17/15/13 | 5 μm | | | Gear Motor | 20/18/15 | 20 μm | | Motor | Vane Motor | 19/17/14 | 10 μm | | | Radial Piston Motor | 19/17/13 | 10 μm | | | Axial Piston Motor | 18/16/13 | 5 μm | | | Directional Valves (Solenoid) | 20/18/15 | 20 μm | | | Check Valves | 20/18/15 | 20 μm | | | Logic Valves | 20/18/15 | 20 μm | | | Cartridge Valves | 20/18/15 | 20 μm | | Valve | Pressure Control Valves (Modulating) | 19/17/14 | 10 µm | | vaive | Flow Control Valves | 19/17/14 | 10 µm | | | Standard Hydraulic
<100 bar / <1450 PSI | 19/17/14 | 10 μm | | | Proportional Valves | 18/16/13 | 5 μm | | | Servo Valves
<210 bar / <3045 PSI | 16/14/11 | 3 µm | | | Servo Valves
>210 bar / >3045 PSI | 15/13/10 | 3 µm | | Actuator | Cylinder | 20/18/15 | 20 µm | # **B-Value and Separations Efficiency** To select filtration that meet the requirements, performance characteristics like the filter fineness, the filtration efficiency, the dirt-hold capacity and the pressure loss has to be observed. The β -value as per ISO 16889 is the relevant characteristic value for filtration efficiency. The β -value is the ratio of particles before ($N_{up\,x}$) and after ($N_{down\,x}$) the filter related to a specific particle size x. $$\beta_x = \frac{N_{up \, x}}{N_{down \, x}}$$ $\beta_{10}>200$ means that of 1000 particles that are 10 μm in size, only five particles can pass through the filter. 995 particles will be trapped by the filter element. Popular filters with inorganic glass fibre medium have to achieve a B-value of at least 200 in order to meet the demands placed on hydraulic filtration today. The filtration efficiency, also called the retention rate, is directly related to the β -value and is calculated as follows: $$E = \frac{(\beta_x - 1)}{\beta_x}$$ $B_{10} > 200$ corresponds to filtration efficiency of 99,5%. # Comparison of the $\operatorname{\mathsf{B-Value}}$ and Efficiency E (each related to a defined Particle Size) | B-value | Filtration Efficiency E | |---------|-------------------------| | 1 | 0,00 % | | 2 | 50,00 % | | 10 | 90,00 % | | 25 | 96,00 % | | 50 | 98,00 % | | 75 | 98,67 % | | 100 | 99,00 % | | 200 | 99,50 % | | 1000 | 99,90 % | | 9999 | 99,99 % | The **dirt-hold capacity** (DHC) shows how much solid dirt a filter element can hold before it has to be replaced. The dirt-hold capacity is therefore the most important parameter in the filter service life. The **differential pressure** (Δp) is another important criterion for the configuration of the filter. Ensure that the size of the filter element is chosen according to the calculation guideline by STAUFF. To guarantee optimum filtration, the β -value, the dirt-hold capacity (DHC) and the differential pressure (Δp) must be carefully matched. # STAUFF ® # **Filtration Terminology** #### **B-value** The β -value as per ISO 16889 is the relevant characteristic value for filtration efficiency. The β -value is the ratio of particles before $(N_{up\,x})$ and after $(N_{down\,x})$ the filter related to a specific particle size x. $$\beta_x = \frac{N_{up x}}{N_{down x}}$$ (see page C11) #### **Cavitation Damage** Cavitation is defined to be the cavity formation in liquids. Cavitation occurs if the local static pressure of a liquid drops below a critical value. This critical value usually corresponds to the vapour pressure of the liquid. Critical effects of cavitation are: - Cavitation wear - Undissolved gas in the hydraulic system - Loud high-frequency noises - Local high temperatures in the liquid - · Changes to the resistance characteristics of the hydraulic resistance #### Cleanliness Level The cleanliness level of a hydraulic fluid is defined by the number of solid particles per ml of fluid. The number of particles is usually measured with an automatic particle counter. The cleanliness level is determined by a class code created by counting the number of particles of different sizes. Particle counting as well as the coding of the cleanliness class for hydraulic oils are described in the ISO 4406 (1999) standard. Beside the ISO 4406 (1999), NAS 1638 (1964) and SAE AS4059 Rev. D (2001) are also still common. #### **Clogging Indicator** The clogging indicator signalises a specific pressure level where the soiled filter element should be replaced. They work with differential pressure (Δ p) or back pressure. Clogging indicators are available in visual, electrical and visual/electrical versions. While it is the responsibility of the installation or maintenance personnel to check the degree of clogging of the filter element with visual clogging indicators, a signal contact (switch) can be connected to the machine controller with an electrical or visual/electrical clogging indicator. #### **Collapse Pressure** The permissible collapse pressure according to ISO 2941 is understood to be the pressure difference that a filter element can withstand with the stipulated direction of flow. Exceeding the collapse pressure results in the destruction of the
filter element. #### Depth Filter Impurities penetrate into the filter fabric and are retained by the structure of the filter fabric. Mainly cellulose and inorganic glass fibre media are used in hydraulic filters. For special applications, plastic media (high-strength) and metal fibre media are also used. The design of the depth filter combines the highest micron rating with a high dirt retention capacity. Due to the fleece-like structure of depth filters, particles are not only separated on the surface of the filter material, but they can penetrate into the filter material, which leads to a considerable increase of the effective filter area. In contrast to sieves, there are no holes in fleece, rather they practically consist of labyrinths in which the particles are trapped. Hence, there is no sharply defined screening, rather a wide range of particles are trapped. #### Differential Pressure The differential pressure (Δp) is defined as the pressure difference between the filter inlet and the filter outlet, or alternatively in front of and behind the filter element. Exceeding the maximum permissible pressure differential leads to the destruction of the filter element. A bypass valve integrated in the filter prevents destruction of the filter element by opening if the differential pressure (Δp) is too high. Then the oil is passed unfiltered into the hydraulic circuit. For applications in which no unfiltered oil is allowed to pass into the hydraulic circuit, there is the possibility of using filters without bypass valves with filter elements that can withstand a high differential pressure $(\Delta p).$ The filter elements must be designed such that they can withstand the maximum expected differential pressure $(\Delta p).$ #### **Dirt-Hold Capacity (DHC)** The dirt-hold capacity (DHC) shows how much solid dirt a filter element can hold. It is measured in the multipass test according to ISO 16889 #### **EPDM** Ethylene-Propylene-Diene-Monomer-rubber (EPDM) is used as a material for 0-rings because of its chemical resistance. #### Filter A filter (hydraulic filter) has the job of keeping solids out of a liquid (oil). A filter is usually made of a filter housing and a filter element. #### Filter Area The filter area is the size of the theoretically spread-out filter element. The larger the filter area, the lower the flow resistance of the filter element. Simultaneously, the dirt-hold capacity (DHC) increases. The following applies in general: the larger the filter area, the longer the service life of the element. Basically the filter area can be enlarged by the number of pleats. #### **Filter Cake** A filter cake is made up of the particles trapped on the surface of a filter medium. #### Filter Design Essentially depends on the following factors: specific flow rate, cleanliness level, amount of contamination, the maximum pressure setting and the required filter service life. #### Filter Element The filter element is located in the filter housing and performs the actual filtering task. # Filtration Efficiency Filtration efficiency is a measure of the effectiveness of a filter element for separating solid particles. It is given in percent (see page C11). #### **Filter Housing** Depending on the application, the filter housing is built into the pressure or return line and must be designed for the specific operating or system pressure and the flow rate. The filter element is located in the filter housing. Depending on the application, the filter housing may be equipped with a bypass valve, a reversing valve, a clogging indicator and other options. #### Filter Material The choice of the right filter material is dependent on different criteria. Amongst others, this includes the type of application, the filter function, degree of contamination or alternatively the required dirt-hold capacity (DHC) as well as requirements of chemical or physical resistance. The following list gives you an overview of how these filter materials differ with regard to specific properties: Inorganic Glass Fibre Inorganic Glass Fibre media are among the most important materials in modern filtration. During production, selected fibres (1 mm ... 5 mm long and with a diameter of 3 μ m ... 10 μ m) are processed into a specific mix. The manufacturing process is very similar to paper production. The fibres are bound with a resin and impregnated. The benefit compared to cellulose paper is a fibre structure that is considerably more homogenous and consequently has larger open pored surfaces. As a result, lower flow resistance is achieved. - Based on Glass Fibres with acrylic or epoxy resin binding - High retention and dirt-hold capacity (DHC) - Excellent separation efficiency of the finest particles due to the three-dimensional labvrinth structure with deepth filtration - Outstanding price/performance ratio #### **Filter Material (Continuation)** #### Polyester - 100% Polyester Fibres with thermal bonding - · High pressure differential resistance - Good chemical resistance - High separation efficiency of the finest particles - Tear-proof structure - No static charging #### Cellulose - Filter material made of Cellulose Fibres with special impregnation - · Variants with the lowest price with good dirt retention capacity - Not suitable for water based media #### Metal Fibre - Sintered Metal Fibres with three-dimensional labyrinth structure for depth filtration - Low flow resistance with high dirt-hold capacity - · Excellent chemical and thermal resistance #### Stainless Steel Wire Mesh Filter elements with a Metal Wire Mesh are often used as a conditionally reusable solution in protection filters, suction filters or return line filters. Depending on the requirements (micron rating, pressure, dynamics) different types of mesh are used like twill, linen, or also Dutch weave - Wire mesh fabric made of material 1.4301 for surface filtration (other material on request) - Low flow resistance due to large-pored screening surface - · Excellent chemical and thermal resistance - Cleanable #### Flow Rate This is the amount of fluid that flows past a specific cross-section per unit time. It is given in litres per minute (I/min) or gallons per minute (US GPM). #### FPM (Viton®) Fluorinated rubber is used as a material for O-rings and is characterised by its outstanding resistance to high temperatures, mineral oils, synthetic hydraulic fluids, fuels and chemicals. #### **Hydraulic Fluid** A pressure liquid is defined to be a fluid used in hydraulic and lubrication systems. According to ISO 6743, the fluids are divided into mineral oil based, flame resistant and biodegredable liquids. #### **Micron Rating** Regarding micron rating, we must differentiate between the filter materials that are used. To define the micron rating for Inorganic Glass Fibre filter elements, the β-value as per ISO 16889 is commonly used. # **Multipass Test** The Multipass Test evaluates the performance of a filter element. Standardised in ISO 16889-2008, this test allows comparable and repeatable results of the elements performance. If a normal filter element life is between a few weeks up to several months, this test reduces this life down to 90 minutes. The element is subjected to a fluid that a large amount of a special test dust ISO MTD contains. Results are given for the ß-ratio, dirt-hold capacity (DHC) and differential pressure. It is used for designing hydraulic circuits, developing new filter materials and comparison of different filter elements. See also page C10 and page C11 to get more information about the outcome data. In former time this test was also known as the Multipass Test ISO 4572. #### NBR (Buna-N®) Nitrile rubber is the most commonly used elastomer for 0-rings and other sealing devices. Also known as Buna N, Nitrile is a copolymer of Butadiene and Acrylonitrile (ACN). The name Buna N is derived from Butadiene and Natrium (the Latin name for Sodium, the catalyst used in polymerizing Butadiene). The "N" stands for Acrylonitrile. #### **Nominal Flow Rate** The nominal flow rate describes the flow rate or the volumetric flow rate for which the respective filter has been designed. It is usually given in litres per minute (I/min) or US Gallons per minute (US GPM) and is an important parameter in the filter design. #### **Nominal Pressure** Pressure for which the filter is designed and which it can be identified with. #### **Operating Pressure / System Pressure** Maximum pressure with which the filter may be used. #### **Surface Filter** Impurities are separated on the surface of the filter element. Surface filters are designed to have uniform pores (gaps), therefore they can almost completely retain specific particle sizes. Surface filters are made of Metal Wire Mesh or Cellulose materials. Other surface filters are metal-edge filters. #### Valve Bypass Valve A bypass valve is a valve that is integrated in a filter or filter element and allows the oil to bypass the contaminated filter element if a defined pressure differential is exceeded. Bypass valves are used to protect the filter element. Non-Return Valve It prevents the continuation line from draining while the filter element is changed. Reverse Flow Valve It is used to bypass the filter element for reversible oil flow so that the fluid does not pass through the filter element in the reverse direction. Multi-Function Valve A combination of bypass, reverse flow and non-return valve. #### Viscosity The viscosity of a fluid describes the flow behavior of a liquid. There are the kinematic viscosity υ with the unit "m²/s" and the dynamic viscosity η with the unit "Ns/m²". In the field of filtration, in the design of filters the kinematic viscosity is required for calculating. The kinematic viscosity υ can also be calculated with the dynamic viscosity η and density $\rho\!:$ $$\upsilon = \frac{\eta}{\rho}$$ The kinematic viscosity unit is "mm²/s", before it was called
centistokes or Stokes $(1 \text{ cSt} = 1 \text{ mm}^2/\text{s} = 10^{-6} \text{m}^2/\text{s})$. The unit of dynamic viscosity is "Ns/m², it was previously reported in Poise (10 P = 1 Ns/ m^2 = 1 Pa s). #### **Choice of Filters** #### **Choice of a Suitable Micron Rating** Generally, the type of components incorporated in the hydraulic system will determine the micron rating required. It has been clearly demonstrated that system components will operate reliably for years if a specific minimum oil cleanliness grade is maintained. Frequently the choice will be determined by the most sensitive component in the system. #### a) Operating Filter To get a rough, first rating of what filter is needed to assure a certain oil cleanness grade please have a look at page C11. Apart from the specific flow rate (I/min per cm2 of filter area), other factors such as operating environment and condition of seals and breathers can have an effect on the cleanliness grade which can actually be achieved. #### b) Protective Filter Occasionally, protective filters are fitted downstream of major components, e.g. the pump, to collect the debris in case of a catastrophic failure. This avoids total stripping and flushing of the system. For economic reasons, protective filters are normally one grade coarser than the operating filters since they do not significantly contribute to the cleaning of the system and this extends filter service intervals. # **Choice of the Optimum Filter** In selecting the filter, the following information must be considered: - \blacksquare Maximum flow volume (Q $_{\max}$) through the filter including surge flows - Kinematic viscosity (v) of the fluid in mm²/s (cSt) at cold start temperature and operating temperature - Density ρ of the fluid - Micron rating (μm): see table on page C11 - Filter material The aim is to choose a filter whose total differential pressure (Δp) is not higher than $\Delta p_{max} = 1.0$ bar (for pressure filters) or $\Delta p_{max} = 0.5$ bar (for return line filters), in a clean state at the normal operating temperature. These values have been proven in practice to give the optimum service life for the element. The nominal flow volume of the filter is the obvious reference value for pre-selection and this should be larger than the flow to be filtered. $$Q_{nom} > Q_{max}$$ Calculations based on the filter data will verify whether the pre-selected filter meets the requirements, at operating temperatures: $$\Delta p_{max} \le 1.0$$ bar (for pressure filter) $\Delta p_{max} \le 0.5$ bar (for return line filter) The total differential pressure of the assembly Δp_{Assy} is calculated by adding the differential pressure of the housing Δp_{Hous} and that of the element Δp_{Elem} . Both the kinematic viscosity and density of the operating medium should be considered for the selection, as the flow curves on the pages following have been determined with a kinematic viscosity of υ = 30 cSt and a density of ρ = 0,86 kg/dm 3 . The $\,$ values of the pressure drops for the Δp_{Hous} and the Δp_{Elem} can be read from the flow curves on the pages following. The values for the kinematic viscosity in cSt and the density in kg/dm³ should be inserted into the following formula: $$\Delta p_{\text{Assy}} = \quad \frac{\rho}{0.86} \cdot \Delta p_{\text{Hous}} + \frac{\rho}{0.86} \cdot \frac{\upsilon}{30} \cdot \Delta p_{\text{Elem}}$$ The filter size is suitable if the $\Delta p_{\text{Assy}}\!<\Delta p_{\text{max}}\!.$ If the calculated Δp_{Assy} is higher than Δp_{max} select the next larger filter size and re-calculate until a satisfactory solution is found. The following two examples explain and help to understand the procedure of calculating a filter. For daily business, it is much easier to use a tool like the "STAUFF Filter Selection" Software. (See page C15) # **Examples of Calculation** #### **Example 1: Selection Pressure Filter** System Information: A pressure filter with an Inorganic Glass Fibre element is required immediately after the pump. The system has standard components and is operating at pressures up to 200 bar. The filter shall be fitted with a bypass valve and a visual clogging indicator. For better understanding only the calculation at the upper temperature is carried out. Data given: Q_{max} : 100 l/min ISO 68 Oil type: Temperature max.: +50°C 44 mm²/s Viscosity $\upsilon_{\text{operating}}$: Density p: 0.882 kg/dm3 10 µm (see table on page C11) Micron rating: #### First Step Pre-selection of the size: SF 045, $Q_{nominal} = 160 \text{ I/min} > Q_{max}$ Pressure drop values (at viscosity of 30 mm²/s) from the flow characteristics: $\Delta p_{Hous} = 0.15 \text{ bar}$ (SF 045 ..., see page C38) $\Delta p_{Elem} = 0.77 \ bar$ (SE-045 G 10 B, see page C40) Determination of the correction factor: $$\Delta p_{Assy} = \frac{0.882}{0.86} \cdot 0.15 \text{ bar } + \frac{0.882}{0.86} \cdot \frac{44}{30} \cdot 0.77 \text{ bar}$$ $$\Delta p_{Assy} = 1.31 \text{ bar} \ge \Delta p_{max} = 1.0 \text{ bar}$$ Since the actual pressure drop is larger than the allowed pressure drop, a larger filter has to be chosen. #### Second Step Selection of the next larger filter size: SF 070, $Q_{nominal} = 240 \text{ l/min} > Q_{max}$ $\Delta p_{Hous} = 0,\!15 \; bar$ (SF 070 ..., see page C38) $\Delta p_{Elem} = 0,45 \text{ bar}$ (SE-070 G 10 B, see page C40) $$\Delta p_{Assy} = \frac{0.882}{0.86} \cdot 0.15 \text{ bar } + \frac{0.882}{0.86} \cdot \frac{44}{30} \cdot 0.45 \text{ bar}$$ $$\Delta p_{Assy} = 0.83 \text{ bar} \le \Delta p_{max} = 1.0 \text{ bar}$$ In a clean state, this filter fulfills the requirements and is suitable for the application. The correct filter designation would be SF070G10B-TB/B/V. #### **Example 2: Selection Return Line Filter** System Information: A return line filter with a Cellulose element with a micron rating of 10 μ m is required to clean the oil. No clogging indicator is required. Please note: If the system incorporates either accumulators or cylinders, the return flow can dramatically exceed pump flow and the maximum surge flow should be the flow used to calculate the pressure drop through the filter. Data given: Q_{max}: 100 l/min Micron rating: 10 µm (see table on page C11) #### First Step Pre-selection of the size: RF 030, $Q_{nominal} = 110 \text{ I/min} > Q_{max}$ Pressure drop values (at viscosity of 30 mm²/s) from the flow characteristics: $\begin{array}{ll} \Delta p_{Hous} = 0.30 \; bar & (RF \; 030 \; ..., \, see \; page \; C66) \\ \Delta p_{Elem} = 0.067 \; bar & (RE-030 \; N \; 10 \; B, \, see \; page \; C66) \end{array}$ Determination of the correction factor (see page C14): $$\Delta p_{Assy} = \frac{0.882}{0.86} \cdot 0.30 \text{ bar } + \frac{0.882}{0.86} \cdot \frac{29}{30} \cdot 0.067 \text{ bar}$$ $$\Delta p_{Assy} = \overline{0.37 \text{ bar}} \le \Delta p_{max} = \overline{0.5 \text{ bar}}$$ In a clean state, this filter fulfills the requirements and is suitable for the application. No further calculation is necessary. The correct filter designation would be **RF030N10B/B**. # **Filter Selection Software** For daily business, it is much easier to use a software tool for the calculation of filters. The STAUFF Filter Selection Software gives an outstanding support in calculating and choosing a well-dimensioned filter. The tool assists in calculating the right size and creates a technical and order data sheet. Please contact STAUFF or your distributor for a free copy of the STAUFF Filter Selection Software. #### **STAUFF Contamination Control Program (SCCP)** The STAUFF Contamination Control Program provides you with a proactive system to control the contamination levels in your hydraulic system. We offer a Contamination Control Seminar, which includes a PowerPoint presentation and printed literature (only in english language available). Topics covered include: - Failures in hydraulic systems - Contamination types and sources - Damage caused by contamination - Fluid cleanliness levels - Target cleanliness levels - Contamination control basics - Filter efficiency - Measuring fluid level cleanliness - Practical applications of filtration To arrange for a presentation contact STAUFF or your distributor. Besides that, STAUFF has also a wide range of training tools and filtration software to support the proper application of filter systems and products. Software includes filter sizing programs as well as training presentations. Contact STAUFF for more information. #### **Complete Program** STAUFF manufactures one of the most comprehensive ranges of Replacement Filter Elements for hydraulic and lubrication applications which are compatible with most of the common The STAUFF Replacement Element program includes replacement elements for over 10000 part numbers covering almost every major international brands of filter elements. The majority of these are available from stock. Continuous improvement of the materials used as well as strict quality controls which take into Parker consideration international standards guarantee the consistently high performance data of the filter elements. STAUFF impresses in particular with its: - Innovative research, design and development - · Modern production lines with complete monitoring of production - · Certified work processes in accordance with: ■ ISO 9001: 2008 Quality management ISO 14001: 2004 **Environment protection** Occupational health and safety OHSAS 18001: 2007 · Comprehensive stocks and quick delivery - Customised products in accordance with customer drawings or on the basis of STAUFF designs - Comprehensive worldwide network of wholly-owned subsidiaries and sales partners The developement and manufacture of STAUFF filter elements are subject to strict testing in accordance with: ■ ISO 2941 Collapse and burst resistance ■ ISO 2942 Verification of fabrication integrity (bubble point test) ■ ISO 2943 Compatibility
with hydraulic media ■ ISO 3723 End load test ■ ISO 3724 Flow fatigue characteristics ■ ISO 3968 Flow characteristics ■ ISO 16889 Filtration performance test (multi-pass method) # **Interchanging STAUFF Filter Elements** As well as original Filter Elements for our own filter housings, STAUFF also provides access to a comprehensive range of Replacement Filter Elements. They match the quality and can be installed in the products of for example: - Argo-Hytos - Eppensteiner Hydac - Mahle - Donaldson - Fairey-Arlon - Internormen - Pall - Other types are available on request STAUFF offers many possibilities for filter conversion, design and calculation and in so doing supports interested parties and customers with the design of efficient solutions: - Printed conversion catalogue, available in a five-language version - Online filter search with more than 65000 data sets under www.filterinterchange.com - Offline filter database with deposited measurements, filter surfaces and drawings - Filter selection software for easy filter design and calculation Thanks to their excellent dirt-hold capacity, all of the filter products supplied by STAUFF have an impressive long service life and high B-value stability: - Inorganic Glass Fibre, Filter Paper, Stainless Fibre (micron ratings between 3 μm and 20 μm respectively) as well as stainless mesh (micron ratings between 10 μm and 500 $\mu m)$ - · Maximum differential pressure depending on filter media and application for the options 16 bar / 232 PSI, 30 bar / 435 PSI or 210 bar / 3000 PSI. Your local STAUFF Distributor will assist you interchanging to STAUFF elements. # The new STAUFF 4Pro Filter Material Especially to highlight are the new STAUFF glass fibre filter materials 4Pro. The latest generation of inorganic glass fibre filter elements increases the service life of your hydraulic system by up to 60 %. The new 4Pro filter material offer several advantages: - High dirt-hold capacity - Improved filtering capacity - Extended maintenance intervals - Reduced operating costs The 4Pro stands for 4 pros that characterise STAUFF glass fibre materials: - proActive - proFessional - proGressive - proTection Filtration Technology # Pressure Filters • Types SF / SF-TM / SF-SM / SFZ / SFA #### **Product Description** STAUFF Pressure Filters are designed for manifold mounting or in-line hydraulic applications, with a maximum operating pressure up to 420 bar / 6000 PSI. Used together with STAUFF SE series Filter Elements, a high efficiency of contaminant removal is assured. The high dirt-hold capacity of the elements ensures long service life and, as a result, reduced maintenance costs. # **Technical Data** #### Construction • SF: Designed for in-line assembly, with threaded mounting holes on top of head. • SF-TM: Designed for manifold mounting, with mounting holes and fluid ports on top of head. • SF-SM: Designed for manifold mounting, with mounting holes and fluid ports on side of head. SFZ: Designed for sandwich plate mounting • SFA: Designed for in-line assembly, with threaded mounting holes on top of head. #### Materials • Filter head: Spheroidal Graphite Cast Iron Free Cutting Steel (only SF-TM014-070) SFA: Aluminium SFZ: Free Cutting Steel • Filter bowl: Cold Drawn Steel SFA: Aluminium ■ 0-rings: NBR (Buna-N®) FPM (Viton®) EPDM (Ethylene-Propylene-Diene-Monomer-Rubber) • Support ring: PTFE (Polytetrafluoroethylene) # **Operating Pressure** SF: max. 420 bar / 6000 PSI SF-TM: max. 315 bar / 4560 PSI SF-SM: max. 315 bar / 4560 PSI SFZ: max. 315 bar / 4560 PSI SFA: max. 160 bar / 2320 PSI #### **Temperature Range** ■ -10 °C ... +100 °C / +14 °F ... +212 °F # Filter Elements Specifications see page C41 #### **Media Compatibility** • Mineral oils, other fluids on request # **Options and Accessories** #### Valve (not available for SFZ) Bypass valve: Allows unfiltered oil to bypass the contaminated element once the opening pressure has been reached, a differential pressure of 6 $^+$ $^{0.5}$ bar / 87 $^+$ $^{7.25}$ PSI Δp is the standard setting. Other settings available upon request. • Reverse flow valve: Allows reverse flow through the filter head without backflushing the element. • Non-return valve: Prevents draining of the delivery line during element change. Multi-function valve: Opening pressure 6 +0,5 bar / 87 +7.25 PSI Bypass, reverse flow capability and non-return valve combined in one valve. #### **Clogging Indicator** Standard actuating pressure: $5_{-0.5}$ bar $/ 72.5_{-7.25}$ PSI Δp Other actuating pressure settings are available upon request. Available indicators: Visual Electrical Visual-electrical (24 V DC, 110 V AC, 230 V AC versions) # **High Pressure Filters • Type SF** #### **Product Description** STAUFF SF series High Pressure Filters are designed for in-line hydraulic applications, with a maximum operating pressure of 420 bar / 6000 PSI. Used together with STAUFF SE series Filter Elements, a high efficiency of contaminant removal is assured. The high dirt-hold capacity of the elements ensures long service life and, as a result, reduced maintenance costs. # **Technical Data** #### Construction • Designed for in-line assembly, with threaded mounting holes on top of head. #### Materials • Filter head: Spheroidal Graphite Cast Iron Filter bowl: Cold Drawn Steel O-rings: NBR (Buna-N®) FPM (Viton®) EPDM (Ethylene-Propylene-Diene-Monomer-Rubber) Support ring: PTFE (Polytetrafluoroethylene) #### **Port Connections** BSP NPT ■ SAE 0-ring thread SAE Code 61 flange ■ SAE Code 62 flange Other port connections available on request. #### **Operating Pressure** Max. 420 bar / 6000 PSI # **Burst Pressure** Min. 1260 bar / 18275 PSI #### Temperature Range ■ -10 °C ... +100 °C / +14 °F ... +212 °F # Filter Elements Specifications see page C22 / C41 # **Media Compatibility** Mineral oils, other fluids on request # Options and Accessories #### Valve Bypass valve: Allows unfiltered oil to bypass the contaminated element once the opening pressure has been reached, a differential pressure of 6 $^+$ $^{0.5}$ bar / 87 $^+$ 7.25 PSI Δp is the standard setting. Other settings available upon request. Reverse flow valve: Allows reverse flow through the filter head without backflushing the element. • Non-return valve: Prevents draining of the delivery line during element change. Multi-function valve: Opening pressure 6 $^{+0,5}$ bar / 87 $^{+7.25}$ PSI Bypass, reverse flow capability and non-return valve combined in one valve. ### **Clogging Indicator** Standard actuating pressure: $5_{-0,5}$ bar / 72.5 $_{-7.25}$ PSI Δp Other actuating pressure settings are available upon request. Available indicators: Visual Electrical Visual-electrical (24 V DC, 110 V AC, 230 V AC versions) # **High Pressure Filters • Type SF** # High Pressure Filters • Type SF | Thread | Filter Size SF | Filter Size SF | | | | | | | | | | |------------------------|----------------|----------------|----------|----------|----------|----------|----------|----------|----------|--|--| | Connection G | 014 | 030 | 045 | 070 | 125 | 090 | 160 | 250 | 300 | | | | BSP | 3/4 | 3/4 | 1-1/4 | 1-1/4 | 1-1/4 | 1-1/2 | 1-1/2 | 1-1/2 | 1-1/2 | | | | NPT | 3/4 | 3/4 | 1-1/4 | 1-1/4 | 1-1/4 | 1-1/2 | 1-1/2 | 1-1/2 | 1-1/2 | | | | SAE 0-ring Thread | 1-1/16-12 | 1-1/16-12 | 1-5/8-12 | 1-5/8-12 | 1-5/8-12 | 1-7/8-12 | 1-7/8-12 | 1-7/8-12 | 1-7/8-12 | | | | SAE Flange 6000 PSI | 3/4 | 3/4 | 1-1/4 | 1-1/4 | 1-1/4 | 1-1/2 | 1-1/2 | 1-1/2 | 1-1/2 | | | | Weight (kg/lbs) | 5,3 | 6,2 | 10,3 | 12 | 16,3 | 27 | 35,5 | - | - | | | | Bowl in One-Part Style | 11.7 | 13.7 | 22.7 | 26.5 | 35.9 | 59.9 | 78.3 | - | - | | | | Weight (kg/lbs) | 5,9 | 6,9 | 12,2 | 13,7 | 20 | 32 | 39,3 | 49 | 57,3 | | | | Bowl in Two-Part Style | 13 | 15.2 | 26.9 | 30.2 | 44.1 | 70.5 | 86.5 | 108 | 126.3 | | | | Dimensions (mm/in) | | Filter Size SF | | | | | | | | | |---|-------|----------------|-------|-------|-------|-------|-------|-------|-------|-------| | | | 014 | 030 | 045 | 070 | 125 | 090 | 160 | 250 | 300 | | | | 104 | 104 | 128 | 128 | 128 | 178 | 178 | 178 | 178 | | 1 | | 4.10 | 4.10 | 5.04 | 5.04 | 5.04 | 7.01 | 7.01 | 7.01 | 7.01 | | | | 91 | 91 | 116 | 116 | 116 | 159 | 159 | 159 | 159 | | 12 | | 3.58 | 3.58 | 4.57 | 4.57 | 4.57 | 6.26 | 6.26 | 6.26 | 6.26 | | _ | | 48 | 48 | 49,5 | 49,5 | 49,5 | 72 | 72 | 72 | 72 | | 3 | | 1.89 | 1.89 | 1.95 | 1.95 | 1.95 | 2.84 | 2.84 | 2.84 | 2.84 | | | | 12,5 | 12,5 | 12,5 | 12,5 | 12,5 | 12,5 | 12,5 | 12,5 | 12,5 | | 4 | | .49 | .49 | .49 | .49 | .49 | .49 | .49 | .49 | .49 | | | | 68 | 68 | 95 | 95 | 95 | 130 | 130 | 130 | 130 | | - | d1 | 2.68 | 2.68 | 3.74 | 3.74 | 3.74 | 5.12 | 5.12 | 5.12 | 5.12 | | į | 1.4 | 188 | 254 | 239 | 298 | 483 | 323 | 494 | - | - | | š | h1 | 7.40 | 10.00 | 9.41 | 11.73 | 19.11 | 12.72 | 19.45 | - | - | | | h2 | 78 | 144 | 103 | 161 | 343 | 148 | 319 | - | - | | S | | 3.07 | 5.67 | 4.06 | 6.34 | 13.5 | 5.83 | 12.56 | - | - | | ğ | Rec.* | 100 | 170 | 140 | 200 | 380 | 190 | 360 | - | - | | with Filter Bowl in One-Part Style
Type SF | | 3.94 | 6.69 | 5.51 | 7.87 | 14.96 | 7.48 | 14.17 | - | - | | | | 85 | 85 | 120 | 120 | 120 | 150 | 150 | - | - | | | Min.* | 3.35 | 3.35 | 4.72 | 4.72 | 4.72 | 5.91 | 5.91 | - | - | | | | 27 | 27 | 32 | 32 | 32 | 36 | 36 | 36 | 36 | | | Hex | 1.06 | 1.06 | 1.26 | 1.26 | 1.26 | 1.42 | 1.42 | 1.42 | 1.42 | | | | 70 | 70 | 101,6 | 101,6 | 101,6 | 133 | 133 | 133 | 133 | | | d1 | 2.76 | 2.76 | 4 | 4 | 4 | 5.24 | 5.24 | 5.24 | 5.24 | | | | 84 | 84 | 115 | 115 | 115 | 155 | 155 | 155 | 155 | | | d3 | 3.31 | 3.31 | 4.53 | 4.53 | 4.53 | 6.10 | 6.10 | 6.10 | 6.10 | | Type SFTL | | 65 | 130 | 100 | 160 | 340 | 120 | 290 | 425 | 590 | | Ж. | h5 | 2.56 | 5.12 | 3.94 | 6.30 | 13.39 | 4.72 | 11.42 | 16.73 | 23.23 | | 9 | | 190 | 256 | 241 | 300 | 485 | 329,5 | 500,5 | 656,5 | 821,5 | | Ξ | h6 | 7.48 | 10.08 | 9.49 | 11.81 | 19.10 | 12.97 | 19.71 | 25.85 | 32.34 | | 2 | L-7 | 80 | 146 | 103 |
163 | 344 | 154,5 | 325,5 | 481,5 | 646,5 | | | h7 | 3.15 | 5.75 | 4.06 | 6.42 | 13.54 | 6.08 | 12.82 | 18.96 | 25.45 | | | | 27 | 27 | 32 | 32 | 32 | 36 | 36 | 36 | 36 | | | Hex | 1.06 | 1.06 | 1.26 | 1.26 | 1.26 | 1.42 | 1.42 | 1.42 | 1.42 | Reference: Rec.*: Recommended | Min.*: Minimum | Dimor | noiono (mm/in) | Filter Size SF | | | | | | | | | | |--------------------|----------------|-----------------|------|-----------------|------|------|-----------------|------|------|------|--| | Dimensions (mm/in) | | 014 | 030 | 045 | 070 | 125 | 090 | 160 | 250 | 300 | | | | b2 | 23,8 | 23,8 | 31,6 | 31,6 | 31,6 | 36,7 | 36,7 | 36,7 | 36,7 | | | | UZ | .94 | .94 | 1.24 | 1.24 | 1.24 | 1.45 | 1.45 | 1.45 | 1.45 | | | _ | b3 | 50,8 | 50,8 | 66,7 | 66,7 | 66,7 | 79,4 | 79,4 | 79,4 | 79,4 | | | _ | | 2.00 | 2.00 | 2.63 | 2.63 | 2.63 | 3.13 | 3.13 | 3.13 | 3.13 | | | | G2 | M10 x 15 | | M14 x 20 | | | M16 x 20 | | | | | | | G3 | 3/8-16 UNC x .5 | 59 | 1/2-13 UNC x .7 | 9 | | 5/8-11 UNC x .7 | 9 | | 79,4 | | | <u> </u> | b4 | 23,8 | 23,8 | 31,6 | 31,6 | 31,6 | 36,7 | 36,7 | 36,7 | 36,7 | | | 2 2 | D4 | .94 | .94 | 1.24 | 1.24 | 1.24 | 1.45 | 1.45 | 1.45 | 1.45 | | | 20 | b5 | 50,8 | 50,8 | 66,7 | 66,7 | 66,7 | 79,4 | 79,4 | 79,4 | 79,4 | | | je 6 | ມວ | 2.00 | 2.00 | 2.63 | 2.63 | 2.63 | 3.13 | 3.13 | 3.13 | 3.13 | | | Flange 6000 PSI | G4 | M10 x 15 | | M14 x 17 | | | M16 x 20 | | | | | | ⊃ Œ | U4 | 3/8-16 UNC | | 1/2-13 UNC | | | 5/8-11 UNC | | | | | none 24 110 230 # **High Pressure Filter Housings / Complete Filters - Type SF** Note: Exact flow will depend on filter element selected. Consult technical data on pages C43 / C44. # 3 Filter Material | Material | max. Δp*collapse | Micron
ratings
available | Code | |------------------------|--------------------|--------------------------------|-------------| | Without filter element | - | - | | | Inorg. glass fibre | 25 bar / 363 PSI | 3, 5, 10, | G | | Inorg. glass fibre | 210 bar / 3045 PSI | 20 | Н | | Stainless fibre | 210 bar / 3045 PSI | 20 | Α | | Stainless mesh | 30 bar / 435 PSI | 25, 50,
100, 200 | В, S | Note: * Collapse/burst resistance as per ISO 2941. Bold types identify preferred materials, other materials on request. #### 4 Micron Rating | 3 μm | 03 | |--------|-----| | 5 μm | 05 | | 10 μm | 10 | | 20 μm | 20 | | 25 μm | 25 | | 50 μm | 50 | | 100 μm | 100 | | 200 μm | 200 | | | | Note: Other micron ratings on request. # 5 Sealing Material NBR (Buna-N®) B FPM (Viton®) V EPDM E Note: Other sealing materials on request. 6 Connecting Flange # 7 Connection Style Type T | Connection Style | Group | | | Thread | Code | | | | | | | |---------------------|---------|-----|----------|-------------|------|----------|-------|--------|-----|--------|-----| | | 014 | 030 | 045 | 070 | 125 | 090 | 160 | 250 | 300 | Style | | | BSP | 3/4 | | 1-1/4 | 1-1/4 | | | | metric | В | | | | BSP | 1 | | 1-1/2 | | | - | | metric | B1 | | | | NPT | 3/4 | | 1-1/4 | 1-1/4 1-1/2 | | | | | UNC | N | | | SAE O-ring Thread | 1-1/16- | -12 | 1-5/8-12 | | | 1-7/8-12 | | | | UNC | U | | SAE Flange 6000 PSI | 3/4 | | 1-1/4 | | | 1-1/2 | | | | metric | GM | | SAE Flange 6000 PSI | 3/4 | | 1-1/4 | | | 1-1/2 | | UNC | GU | | | | SAE Flange 3000 PSI | 3/4 | | 1-1/4 | | | 1-1/2 | | metric | FM | | | | SAE Flange 3000 PSI | 3/4 | | 1-1/4 | | | 1-1/2 | 1-1/2 | | | UNC | FU | | SAE Flange 3000 PSI | 1 | | - | | | 2 | | | | metric | F1M | | SAE Flange 3000 PSI | 1 | | - 2 | | | | | UNC | F1U | | | 0 В R N M 10 Thermostop 24 V DC 110 V AC 230 V AC Without thermostop 11 Voltage (only for Code P) With thermostop Note: Other port connections on request. Bold types identify preferred connection styles. # 8 Valve Without valve Bypass valve Reverse flow valve Non-return valve Multi-function valve Visual-electrical 9 Clogging Indicator Without clogging indicator 0 Visual, with automatic reset A Visual, with manual reset V Electrical E # 12 Style Filter Bowl | With bowl in one-part style | none | |--|------| | Toploader, with bowl in two-part style | TL | Note: Group size SF250 and SF300 only available in TL-version. # 13 Design Code Only for information # Filter Elements - Type SE Н Α 210 bar / 3045 PSI 210 bar / 3045 PSI 30 bar / 435 PSI 4 Micron Rating 03 $3 \, \mu m$ 05 5 µm 10 µm 10 20 20 µm 25 µm 25 50 µm 50 100 µm 100 $200~\mu m$ 200 Note: Other micron ratings on request. * Collapse/burst resistance as per ISO 2941. Bold types identify preferred materials, other materials on request. # 5 Sealing Material | | 9 | | | | | |------|---------|-----|--|---|---| | NBR | (Buna-N | I®) | | В | | | FPM | (Viton® |) | | V | Ī | | EPDN | 1 | | | E | : | | | | | | | | Note: Other sealing materials on request. # 6 Design Code Only for information X Inorg. glass fibre Stainless fibre Stainless mesh 25, 50, 100, 200 20 # **High Pressure Filters • Type SF-TM** #### **Product Description** STAUFF SF-TM series High Pressure Filters are designed for manifold block mounting hydraulic applications, with a maximum operating pressure of 315 bar / 4560 PSI. Used together with STAUFF SE series Filter Elements, a high efficiency of contaminant removal is assured. The high dirt-hold capacity of the elements ensures long service life and, as a result, reduced maintenance costs. #### **Technical Data** #### Construction • Designed for manifold mounting, with mounting holes and fluid ports on top of head. #### **Materials** • Filter head: SF-TM-014-070 Free Cutting Steel SF-TM-090-300 Spheroidal Graphite Cast Iron ■ Filter bowl: Cold Drawn Steel O-rings: NBR (Buna-N®) FPM (Viton®) EPDM (Ethylene-Propylene-Diene-Monomer-Rubber) Support ring: PTFE (Polytetrafluoroethylene) #### **Operating Pressure** Max. 315 bar / 4560 PSI ### **Burst Pressure** Min. 945 bar / 13705 PSI ### Temperature Range ■ -10 °C ... +100 °C / +14 °F ... +212 °F #### Filter Elements Specifications see page C26 / C41 # **Media Compatibility** • Mineral oils, other fluids on request # **Options and Accessories** #### Valve Bypass valve: Allows unfiltered oil to bypass the contaminated element once the opening pressure has been reached, a differential pressure of 6 $^{+\,0.5}$ bar / 87 $^{+\,7.25}$ PSI Δp is the standard setting. Other settings available upon request. • Reverse flow valve: Allows reverse flow through the filter head without backflushing the element. • Non-return valve: Prevents draining of the delivery line during element change. Multi-function valve: Opening pressure 6 +0,5 bar / 87 +7.25 PSI Bypass, reverse flow capability and non-return valve combined in one valve. #### **Clogging Indicator** Standard actuating pressure: $5_{-0.5}$ bar / 72.5 $_{-7.25}$ PSI Δp Other actuating pressure settings are available upon request. Available indicators: Visual Electrical Visual-electrical (24 V DC, 110 V AC, 230 V AC versions) # STAUFF® # **High Pressure Filters • Type SF-TM** # **High Pressure Filters • Type SF-TM** | Dim' | (mars l' -) | Filter Size S | F - TM | | | | | | | | |------------|-------------|---------------|--------|-------------|--------------|-------------|--------|-------|-------|-------| | Dimensions | s (mm/in) | 014 | 030 | 045 | 070 | 125 | 090 | 160 | 250 | 300 | |
o1 | | 6 | 6 | 6 | 6 | 6 | 175,6 | 175,6 | 175,6 | 175,6 | |) | | .24 | .24 | .24 | .24 | .24 | 6.91 | 6.91 | 6.91 | 6.91 | | | | 104 | 104 | 115 | 115 | 115 | 158 | 158 | 158 | 158 | |)2 | | 4.09 | 4.09 | 4.53 | 4.53 | 4.53 | 6.22 | 6.22 | 6.22 | 6.22 | | | | 80 | 80 | 110 | 110 | 110 | 125 | 125 | 125 | 125 | | 03 | | 3.35 | 3.35 | 4.33 | 4.33 | 4.33 | 4.92 | 4.92 | 4.92 | 4.92 | | .4 | | 89 | 89 | 90 | 90 | 90 | 96,8 | 96,8 | 96,8 | 96,8 | | 04 | | 3.50 | 3.50 | 3.54 | 3.54 | 3.54 | 3.81 | 3.81 | 3.81 | 3.81 | | | | 31,8 | 31,8 | 86 | 86 | 86 | 21,4 | 21,4 | 21,4 | 21,4 | | b5 | | 1.25 | 1.25 | 3.39 | 3.39 | 3.39 | .84 | .84 | .84 | .84 | | 1.0 | | | | 61 | 61 | 61 | 48,4 | 48,4 | 48,4 | 48,4 | | b6 | | - | - | 2.40 | 2.40 | 2.40 | 1.91 | 1.91 | 1.91 | 1.91 | | | | | | 57 | 57 | 57 | 84,1 | 84,1 | 84,1 | 84,1 | | b7 | | - | - | 2.24 | 2.24 | 2.24 | 3.31 | 3.31 | 3.31 | 3.31 | | | | 31,6 | 31,6 | 38 | 38 | 38 | 67,4 | 67,4 | 67,4 | 67,4 | | b8 | | 1.24 | 1.24 | 1.50 | 1.50 | 1.50 | 2.65 | 2.65 | 2.65 | 2.65 | | | | | | 14 | 14 | 14 | 42,05 | 42,05 | 42,05 | 42,05 | | b9 | | - | - | .55 | .55 | .55 | 1.66 | 1.66 | 1.66 | 1.66 | | | | 7,5 | 7,5 | 12,5 | 12,5 | 12,5 | 16,7 | 16,7 | 16,7 | 16,7 | | b10 | | .30 | .30 | .49 | .49 | .49 | .66 | .66 | .66 | .66 | | | | 55,9 | 55,9 | 57,5 | 57,5 | 57,5 | .00 | .00 | | .00 | | b11 | | 2.20 | 2.20 | 2.26 | 2.26 | 2.26 | - | - | - | - | | | | L.LU | 2.20 | 9 | 9 | 9 | | | | | | b12 | | - | - | .35 | .35 | .35 | - | - | - | - | | | | 24.1 | 24.1 | 12 | 12 | | | | | | | b13 | | .95 | .95 | .47 | .47 | .47 | - | - | - | - | | | | .ჟე | .90 | 26,5 | | 26,5 | | | | | | b14 | | - | - | 1.04 | 26,5
1.04 | 1.04 | - | - | - | - | | | | | | | | | | | | | | b15 | | - | - | 10,5 | 10,5 | 10,5 | | - | - | - | | | | 00.0 | 00.0 | .41 | .41 | .41 | 450 | 450 | 450 | 450 | | d1 | | 68,2 | 68,2 | 95,2 | 95,2 | 95,2 | 156 | 156 | 156 | 156 | | | | 2.69 | 2.69 | 3.75 | 3.75 | 3.75 | 6.14 | 6.14 | 6.14 | 6.14 | | d2 | | 25,3 | 25,3 | 28,6 | 28,6 | 28,6 | 130,2 | 130,2 | 130,2 | 130,2 | | | | 1.00 | 1.00 | 1.13 | 1.13 | 1.13 | 5.13 | 5.13 | 5.13 | 5.13 | | d3 | | 17,5 | 17,5 | 21,4 | 21,4 | 21,4 | 30 | 30 | 30 | 30 | | | | .69 | .69 | .84 | .84 | .84 | 1.18 | 1.18 | 1.18 | 1.18 | | d4 | | 8,5 | 8,5 | 9 | 9 | 9 | 41 | 41 | 41 | 41 | | | | .33 | .33 | .35 | .35 | .35 | 1.61 | 1.61 | 1.61 | 1.61 | | d5 | | _ | _ | 7/16-14 UNC | 7/16–14 UNC | 7/16-14 UNC | 12 | 12 | 12 | 12 | | | | | | 7710 11010 | 7710 11010 | 7710 11010 | .47 | .47 | .47 | .47 | | d6 | | | _ | _ | _ | _ | 6 | 6 | 6 | 6 | | uo | | | | | | | .24 | .24 | .24 | .24 | | d7 | | 84 | 84 | 115 | 115 | 115 | 155 | 155 | 155 | 155 | | u/ | | 3.31 | 3.31 | 4.53 | 4.53 | 4.53 | 6.10 | 6.10 | 6.10 | 6.10 | | d8 | | 70 | 70 |
101,6 | 101,6 | 101,6 | 133 | 133 | 133 | 133 | | uo | | 2.76 | 2.76 | 4.00 | 4.00 | 4.00 | 5.24 | 5.24 | 5.24 | 5.24 | | h1 | | 162 | 228 | 206 | 264 | 446 | 324 | 495 | | | | h1 | | 6.38 | 8.97 | 8.11 | 10.39 | 17.56 | 12.76 | 19.49 | | | | h0 | | 164 | 230 | 206 | 266 | 447 | 330,5 | 501,5 | 657,5 | 822,5 | | h2 | | 6.46 | 9.06 | 8.11 | 10.47 | 17.60 | 13.01 | 19.74 | 25.89 | 32.38 | | . 0 | | 76 | 76 | 93 | 93 | 93 | 178 | 178 | 178 | 178 | | h3 | | 2.99 | 2.99 | 3.66 | 3.66 | 3.66 | 7.01 | 7.01 | 7.01 | 7.01 | | | | 25 | 25 | 25 | 25 | 25 | 82 | 82 | 82 | 82 | | h4 | | .98 | .98 | .98 | .98 | .98 | 3.23 | 3.23 | 3.23 | 3.23 | | | | | 1.00 | 1.50 | | 1 | 19,1 | 19,1 | 19,1 | 19,1 | | h5 | | - | - | - | - | - | .75 | .75 | .75 | .75 | | | | 64 | 64 | 82,5 | 82,5 | 82,5 | 136 | 136 | 136 | 136 | | h6 | | 2.52 | 2.52 | 3.25 | 3.25 | 3.25 | 5.35 | 5.35 | 5.35 | 5.35 | | | | 100 | 170 | 140 | 200 | 380 | 190 | 360 | 0.00 | 0.00 | | One- | Rec.* | 3.94 | 6.69 | 5.51 | 7.87 | 14.96 | 7.48 | 14.17 | - | - | | Part | | | 85 | 120 | 120 | 120 | 150 | 150 | | | | h7 Style | Min.* | 85 | | | | | _ | | | - | | | | 3.35 | 3.35 | 4.72 | 4.72 | 4.72 | 5.91 | 5.91 | 405 | F00 | | Two-I | Part Style | 65 | 130 | 100 | 160 | 340 | 120 | 290 | 425 | 590 | | | , | 2.56 | 5.12 | 3.94 | 6.30 | 13.39 | 4.72 | 11.42 | 16.73 | 23.23 | | t1 | | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | | - | | .08 | .08 | .08 | .08 | .08 | .12 | .12 | .12 | .12 | | t2 | | _ | | 13 | 13 | 13 | | _ | | | | | | | | .51 | .51 | .51 | | | | | | Lov | | 27 | 27 | 32 | 32 | 32 | 36 | 36 | 36 | 36 | | Hex | | 1.06 | 1.06 | 1.26 | 1.26 | 1.26 | 1.42 | 1.42 | 1.42 | 1.42 | | | One-Part | 5,7 | 6,3 | 11 | 12,5 | 17 | 21,6 | 28,8 | | | | Weight | Style | 12.5 | 13.9 | 24.2 | 27.8 | 37.8 | 48.0 | 64.0 | - | - | | (kg/lbs) | Two-Part | | 7,3 | 13,1 | 14,6 | 21 | 26,5 | 33,8 | 43,2 | 54,6 | | , | Style | 14.7 | 16.2 | 29.1 | 32.4 | 46.7 | 58.9 | 75.1 | 96 | 121.3 | | | , | | 10.2 | 1 20.1 | 1 02.1 | 1 | 1 00.0 | 170.1 | 1 00 | 121.0 | Reference: Rec.*: Recommended | Min.*: Minimum none TL # High Pressure Filter Housings / Complete Filters - Type SF-TM 3 Filter Material | Material | max. Δp*collapse | Micron
ratings
available | Code | |------------------------|--------------------|--------------------------------|-------------| | Without filter element | - | - | | | Inorg. glass fibre | 25 bar / 363 PSI | 3, 5, 10, | G | | Inorg. glass fibre | 210 bar / 3045 PSI | 20 | Н | | Stainless fibre | 210 bar / 3045 PSI | 20 | Α | | Stainless mesh | 30 bar / 435 PSI | 25, 50,
100, 200 | В, S | Note: * Collapse/burst resistance as per ISO 2941. Bold types identify preferred materials, other materials on request. # 4 Micron Rating | 3 µm | 03 | |--------|-----| | 5 μm | 05 | | 10 μm | 10 | | 20 μm | 20 | | 25 μm | 25 | | 50 μm | 50 | | 100 μm | 100 | | 200 μm | 200 | | | | Note: Other micron ratings on request. Sealing Material NBR (Buna-N®) FPM (Viton®) EPDM B Note: Other sealing materials on request. 11 Style Filter Bowl With bowl in one-part style Toploader, with bowl in two-part style Note: Group size SF-TM-250 and SF-TM-300 only available in TL-version. #### 6 Connection Size 9 Thermostop | Connection Size | Group | Group | | | | | | | | | | |-----------------|----------|----------------|-----------|----------|----------|----------|----------|---------|-----|------|--| | | 014 | 030 | 045 | 070 | 125 | 090 | 160 | 250 | 300 | Code | | | Nominal Bore | 1/2 (Ø17 | ,5mm / Ø.69in) | 1-1/4 (02 | 21,4mm / | Ø .85in) | 1-1/2 (Ø | 30mm / Ø | 1.18in) | | В | | Without thermostop none With thermostop T 10 Voltage (only for Code P) O Voltage (only for Code P) 24 V DC 24 110 V AC 110 230 V AC 230 12 Design Code Only for information Filter Elements • Type SE 10 µm 20 µm 25 µm 50 µm 100 µm $200~\mu m$ According to filter housing 3 Filter Material Material max. Δp*collapse ratings Code available G Inorg. glass fibre 25 bar / 363 PSI 3, 5, 10, Inorg. glass fibre 210 bar / 3045 PSI Н 20 Stainless fibre 210 bar / 3045 PSI Α 25, 50, 100, 200 Stainless mesh 30 bar / 435 PSI Note: Other micron ratings on request. * Collapse/burst resistance as per ISO 2941. Bold types identify preferred materials, other materials on request. 10 20 25 50 100 200 EPDM E Note: Other sealing materials on request. 6 Design Code Only for information X В ν # **High Pressure Filters • Type SF-SM** #### **Product Description** STAUFF SF-SM series High Pressure Filters are designed for manifold block mounting hydraulic applications, with a maximum operating pressure of 315 bar / 4560 PSI. Used together with STAUFF SE series Filter Elements, a high efficiency of contaminant removal is assured. The high dirt-hold capacity of the elements ensures long service life and, as a result, reduced maintenance costs. #### **Technical Data** #### Construction • Designed for manifold mounting, with mounting holes and fluid ports on side of head. #### **Materials** • Filter head: Spheroidal Graphite Cast Iron ■ Filter bowl: Cold Drawn Steel ■ 0-rings: NBR (Buna-N®) FPM (Viton®) EPDM (Ethylene-Propylene-Diene-Monomer-Rubber) • Support ring: PTFE (Polytetrafluoroethylene) #### **Operating Pressure** Max. 315 bar / 4560 PSI #### **Burst Pressure** Min. 945 bar / 13705 PSI # **Temperature Range** \blacksquare -10 °C ... +100 °C / +14 °F ... +212 °F # Filter Elements ■ Specifications see page C30 / C41 # **Media Compatibility** Mineral oils, other fluids on request # **Options and Accessories** #### Valve Bypass valve: Allows unfiltered oil to bypass the contaminated element once the opening pressure has been reached, a differential pressure of 6 $^+$ $^{0.5}$ bar / 87 $^+$ $^{7.25}$ PSI Δp is the standard setting. Other settings available upon request. Reverse flow valve: Allows reverse flow through the filter head without backflushing the element. • Non-return valve: Prevents draining of the delivery line during element change. Multi-function valve: Opening pressure 6 +0,5 bar / 87 +7.25 PSI Bypass, reverse flow capability and non-return valve combined in one valve. #### **Clogging Indicator** Standard actuating pressure: $5_{-0.5}$ bar / 72.5 $_{-7.25}$ PSI Δp Other actuating pressure settings are available upon request. Available indicators: Visual Electrical Visual-electrical (24 V DC, 110 V AC, 230 V AC versions) # STAUFF ® # **High Pressure Filters - Type SF-SM** # **High Pressure Filters • Type SF-SM** | Dimen | sions (mm/ | /in) | Filter Size | | | | | | | | | | _ | | |------------------|-----------------|--------|-------------|-----------|------------|------------|------------|------------|------------|------------|------------------|------------|------------|-----------| | Jiiii Gii | 310113 (111111) | , 111) | 014 | 030 | 045 | 045 0AI | 070 | 070 OAI | 125 | 125 OAI | 090 | 160 | 250 | 300 | | 01 | | | 20 | 20 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | | ,.
 | | | .79 | .79 | 1.18 | 1.18 | 1.18 | 1.18 | 1.18 | 1.18 | 1.18 | 1.18 | 1.18 | 1.18 | | b2 | | | 110 | 110 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | 140 | | _ | | | 4.33 | 4.33 | 5.51 | 5.51 | 5.51 | 5.51 | 5.51 | 5.51 | 5.51 | 5.51 | 5.51 | 5.51 | | 03 | | | 72 | 72 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | | | | | 2.83 | 2.83 | 3.74 | 3.74 | 3.74 | 3.74 | 3.74 | 3.74 | 3.74 | 3.74 | 3.74 | 3.74 | | b4 | | | 66 | 66 | 89 | 89 | 89 | 89 | 89 | 89 | | _ | _ | - | | | | | 2.60 | 2.60 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | 3.50 | | | | | | b5 | | | 45 | 45 | 59 | 59 | 59 | 59 | 59 | 59 | 79,5 | 79,5 | 79,5 | 79,5 | | | | | 1.77 | 1.77 | 2.32 | 2.32 | 2.32 | 2.32 | 2.32 | 2.32 | 3.13 | 3.13 | 3.13 | 3.13 | | b6 | | | 48 | 48 | 69 | 69 | 69 | 69 | 69 | 69 | | | | | | | | | 1.89 | 1.89 | 2.72 | 2.72 | 2.72 | 2.72 | 2.72 | 2.72 | | | | | | d1 | | | 26 | 26 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | | u i | | | 1.02 | 1.02 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | | d2 | | | 84 | 84 | 116 | 116 | 116 | 116 | 116 | 116 | 154 | 154 | 154 | 154 | | uz | | | 3.31 | 3.31 | 4.57 | 4.57 | 4.57 | 4.57 | 4.57 | 4.57 | 6.06 | 6.06 | 6.06 | 6.06 | | 40 | | | 68 | 68 | 95 | 95 | 95 | 95 | 95 | 95 | 130 | 130 | 130 | 130 | | d3 | | | 2.68 | 2.68 | 3.74 | 3.74 | 3.74 | 3.74 | 3.74 | 3.74 | 5.12 | 5.12 | 5.12 | 5.12 | | d4 | | | 18 | 18 | 22 | 22 | 22 | 22 | 22 | 22 | 23 | 23 | 23 | 23 | | u4 | | | .71 | .71 | .87 | .87 | .87 | .87 | .87 | .87 | .91 | .91 | .91 | .91 | | 45 | | | 20 | 20 | 32 | 32 | 32 | 32 | 32 | 32 | 30 | 30 | 30 | 30 | | d5 | | | .79 | .79 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.18 | 1.18 | 1.18 | 1.18 | | 16 | | | 70 | 70 | 101,5 | 101,5 | 101,5 | 101,5 | 101,5 | 101,5 | 133 | 133 | 133 | 133 | | d6 | | | 2.76 | 2.76 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 5.24 | 5.24 | 5.24 | 5.24 | | 17 | | | 84 | 84 | 115 | 115 | 115 | 115 | 115 | 115 | 155 | 155 | 155 | 155 | | d7 | | | 3.31 | 3.31 | 4.53 | 4.53 | 4.53 | 4.53 | 4.53 | 4.53 | 6.10 | 6.10 | 6.10 | 6.10 | | | | | 217 | 284 | 280 | 284 | 340 | 344 | 506 | 508 | 353 | 523 | 673 | 839 | | 11 | | | 8.54 | 11.18 | 11.02 | 11.18 | 13.39 | 13.54 | 19.92 | 20.00 | 13.90 | 20.59 | 26.50 | 33.03 | | | | | 219 | 286 | 282 | 286 | 342 | 346 | 507 | 507 | 355 | 525 | 675 | 841 | | 12 | | | 8.62 | 11.26 | 11.10 | 11.26 | 13.46 | 13.62 | 19.96 | 19.96 | 13.98 | 20.67 | 26.57 | 33.11 | | _ | | | 181 | 248 | 222 | 239 | 282 | 299 | 464 | 481 | 357 | 527 | 677 | 843 | | 13 | | | 7.13 | 9.76 | 8.74 | 9.41 | 11.10 | 11.77 | 18.27 | 18.94 | 14.06 | 20.75 | 26.65 | 33.19 | | | | | 83 | 150 | 117 | 119 | 177 | 179 | 343 | 345 | 157 | 329 | 477 | 643 | | h4 | | | 3.27 | 5.91 | 4.61 | 4.69 | 6.97 | 7.05 | 13.50 | 13.58 | 6.18 | 12.95 | 18.78 | 25.31 | | _ | | | 45,5 | 45,5 | 61 | 61 | 61 | 61 | 61 | 61 | 94 | 94 | 94 | 94 | | h5 | | | 1.79 | 1.79 | 2.40 | 2.40 | 2.40 | 2.40 | 2.40 | 2.40 | 3.70 | 3.70 | 3.70 | 3.70 | | | | | 94 | 94 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | | h6 | | | 3.70 | 3.70 | 4.33 | 4.33 |
4.33 | 4.33 | 4.33 | 4.33 | 4.33 | 4.33 | 4.33 | 4.33 | | | | | 55 | 55 | 60 | 60 | 60 | 60 | 60 | 60 | 58 | 58 | 58 | 58 | | h7 | | | 2.17 | 2.17 | 2.36 | 2.36 | 2.36 | 2.36 | 2.36 | 2.36 | 2.28 | 2.28 | 2.28 | 2.28 | | | | | 19,5 | 19,5 | 25 | 25 | 25 | 25 | 25 | 25 | 26 | 26 | 26 | 26 | | h8 | | | .77 | .77 | .98 | .98 | .98 | .98 | .98 | .98 | 1.02 | 1.02 | 1.02 | 1.02 | | | | | 34,5 | 34,5 | 31 | 31 | 31 | 31 | 31 | 31 | 32 | 32 | 32 | 32 | | h9 | | | 1.36 | 1.36 | 1.22 | 1.22 | 1.22 | 1.22 | 1.22 | 1.22 | 1.26 | 1.26 | 1.26 | 1.26 | | | | | 35 | 35 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | | h10 | | | 1.38 | 1.38 | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | 2.05 | | | | | 80 | 146 | 103 | 103 | 163 | 163 | 344 | 344 | 154,5 | 325,5 | 481,5 | 646,5 | | 111 | | | 3.15 | 5.75 | 4.06 | 4.06 | 6.42 | 6.42 | 13.64 | 13.64 | 6.08 | 12.81 | 18.96 | 25.45 | | | | | 64 | 64 | 82,5 | 82,5 | 82,5 | 82,5 | 82,5 | 82,5 | 136 | 136 | 136 | 136 | | 112 | | | 2.52 | 2.52 | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 | 3.25 | 5.35 | 5.35 | 5.35 | 5.35 | | | | | 100 | 170 | 140 | 140 | 200 | 200 | 380 | 380 | 190 | 360 | 3.00 | 5.50 | | | One- | Rec.* | 3.94 | 6.69 | 5.51 | 5.51 | 7.87 | 7.87 | 14.96 | 14.96 | 7.48 | 14.17 | - | - | | | Part | | 85 | 85 | 120 | 120 | 120 | 120 | 120 | 120 | 150 | 150 | | | | 13 | Style | Min.* | 3.35 | 3.35 | 4.72 | 4.72 | 4.72 | 4.72 | 4.72 | 4.72 | 5.91 | 5.91 | - | - | | | | | 65 | 130 | 100 | 100 | 160 | 160 | 340 | 340 | 120 | 290 | 425 | 590 | | | Two-Part S | Style | 2.56 | 5.12 | 3.94 | 3.94 | 6.30 | 6.30 | 13.39 | 13.39 | 4.72 | 11.42 | 16.73 | 23.23 | | | | | 24 x 3 | 24 x 3 | 40 x 3,5 | 4.72
40 x 3,5 | 40 x 3,5 | 40 x 3,5 | 40 x 3,5 | | 0-ring | g | | | | | | | | | | | | | | | | | | .95 x .14 | .95 x .14 | 1.57 .1 | | lex | | | 27 | 27 | 32 | 32 | 32 | 32 | 32 | 32 | 36 | 36 | 36 | 36 | | | | D | 1.06 | 1.06 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.42 | 1.42 | 1.42 | 1.42 | | | | -Part | 5,2 | 6,1 | 9,6 | 10,7 | 11,6 | 12,7 | 15 | 17 | 22,9 | 30,9 | - | - | | | | | 11.4 | 13.4 | 21.1 | 23.5 | 25.5 | 27.9 | 33.0 | 37.4 | 50.4 | 68.0 | | | | Neight
kg/lbs | | -Part | 6,1 | 7,2 | 11,5 | 12,6 | 15,4 | 16,5 | 18,8 | 20,8 | 27,9 | 35,9 | 42,1 | 50,3 | Reference: Rec.*: Recommended | Min.*: Minimum # High Pressure Filter Housings / Complete Filters - Type SF-SM 05 10 20 25 50 100 200 # Filter Elements - Type SE Note: Other micron ratings on request. 4 Micron Rating 3 μm > 5 μm 10 μm $20 \, \mu m$ 25 µm 50 µm 100 μm 200 μm # **High Pressure Filters • Type SFZ** #### **Product Description** STAUFF SFZ series High Pressure Filters are designed for sandwich plate mounting in manifold block mounting hydraulic applications, with a maximum operating pressure of 315 bar / 4560 PSI. Used together with STAUFF SE series Filter Elements, a high efficiency of contaminant removal is assured. The high dirt-hold capacity of the elements ensures long service life and, as a result, reduced maintenance costs. #### **Technical Data** #### Construction • Designed for sandwich plate mounting #### Materials • Filter head: Free Cutting Steel • Filter bowl: Cold Drawn Steel • 0-rings: NBR (Buna-N®) FPM (Viton®) EPDM (Ethylene-Propylene-Diene-Monomer-Rubber) • Support ring (bowl): PTFE (Polytetrafluoroethylene) #### **Connecting Port** According to ISO 4401-03-02-0-05 NG6 (Ref.: NFPA/ANSI D03) ### **Operating Pressure** Max. 315 bar / 4560 PSI #### **Burst Pressure** ■ Min. 945 bar / 13705 PSI #### **Temperature Range** ■ -10 °C ... +100 °C / +14 °F ... +212 °F # **Filter Elements** ■ Specifications see page C34 / C41 # **Media Compatibility** . Mineral oils, other fluids on request # 0-Ring • 9x1,7 (included in delivery) # **Options and Accessories** #### **Clogging Indicator** Standard actuating $5_{-0.5}$ bar / 72.5 $_{-7.25}$ PSI Δp 8 $_{-0.5}$ bar / 116 $_{-7.25}$ PSI Δp pressure: Other actuating pressure settings are available upon request. Available indicators: Visual Visual-electrical (24 V DC, 110 V AC, 230 V AC versions) # **High Pressure Filters • Type SFZ** # **High Pressure Filters - Type SFZ** | Dimensions (mm/in) Filter Size SFZ SFZ008 b1 14 | | |--|--| | $\begin{array}{c} b1 & \frac{14}{.55} \\ b2 & \frac{40,5}{1.59} \\ \\ & 30,2 \\ \end{array}$ | | | b2 40,5
1.59
30,2 | | | b2 40,5
1.59
30,2 | | | 1.59 | | | 30,2 | | | b3 00,2
1 10 | | | | | | 04 5 | | | b4 21,5 .85 | | | 10.7 | | | .50 | | | 9 | | | .35 | | | 80 | | | [0.10 | | | b8 140 5.51 | | | 0.01 | | | b9 229 | | | 3.02 | | | b10 50 | | | 1.97 | | | d1 5,3 | | | d1 .21 .46 | | | $\frac{46}{1.91}$ | | | 1.01 | | | h1 31 | | | 0.0 | | | h2 25,8 1.02 | | | 1.02 | | | h3 | | | F4 | | | h4 0,1 .20 .20 | | | 22.5 | | | 1.28 | | | 0.75 | | | .03 | | | 40 | | | Sq1 40 1.89 | | | 27 | | | Sq2 27 1.06 | | # **High Pressure Filter Housings / Complete Filters • Type SFZ** # Filter Elements • Type SE # **Medium Pressure Filters • Type SFA** #### **Product Description** STAUFF SFA series Medium Pressure Filters are designed for in-line hydraulic applications with a maximum operating pressure of 160 bar / 2320 PSI. Used together with STAUFF SE series Filter Elements, a high efficiency of contamination removal is assured. The dirt-hold capacity of the elements ensures long service life, and as a result, reduced maintenance costs. #### **Technical Data** #### Construction • Designed for in-line assembly, with threaded mounting holes on top of head. #### **Materials** Filter head: Cast Aluminum Filter bowl: Aluminium 0-rings: NBR (Buna-N®) FPM (Viton®) EPDM (Ethylene-Propylene-Diene-Monomer-Rubber) • Support ring: PTFE (Polytetrafluoroethylene) #### **Port Connections** ■ BSP NPTSAE 0-ring thread ■ SAE Code 61 Flange # **Operating Pressure** ■ SFA014/030: Max. 160 bar / 2320 PSI Max. 190 bar / 2755 PSI (according to ANSI T2.6.1. R2-2001) SFA045/070: Max. 150 bar / 2175 PSI Max. 171 bar / 2480 PSI (according to ANSI T2.6.1. R2-2001) ### **Burst Pressure** Min. 480 bar / 6960 PSI ### **Temperature Range** ■ -10 °C ... +100 °C / +14 °F ... +212 °F # Filter Elements Specifications see page C38 / C41 # **Media Compatibility** • Mineral oils, other fluids on request # **Options and Accessories** #### Valve Bypass valve: Allows unfiltered oil to bypass the contaminated element once the opening pressure has been reached, a differential pressure of 6 $^+$ $^{0.5}$ bar / 87 $^+$ $^{7.25}$ PSI Δp is the standard setting. Other settings available upon request. Reverse flow valve: Allows reverse flow through the filter head without backflushing the element. • Non-return valve: Prevents draining of the delivery line during element change. Multi-function valve: Opening pressure 6 +0,5 bar / 87 +7.25 PSI Bypass, reverse flow capability and non-return valve combined in one valve. #### **Clogging Indicator** Standard actuating pressure: $5_{-0.5}$ bar / 72.5 $_{-7.25}$ PSI Δp Other actuating pressure settings are available upon request. Available indicators: Visual Electrical Visual-electrical (24 V DC, 110 V AC, 230 V AC versions) # **Medium Pressure Filters • Type SFA** ^{*} recommended space for element change ## **Medium Pressure Filters - Type SFA** | Thread Connection G | Filter Size SFA | | | | | | |---------------------|-----------------|----------|----------|----------|--|--| | Thread Connection d | 014 | 030 | 045 | 070 | | | | BSP | 3/4 | 3/4 | 1-1/4 | 1-1/4 | | | | NPT | 3/4 | 3/4 | 1-1/4 | 1-1/4 | | | | SAE 0-ring Thread | 1-1/6-12 | 1-1/6-12 | 1-5/8-12 | 1-5/8-12 | | | | SAE Flange 3000 PSI | 3/4 | 3/4 | 3/4 | 3/4 | | | | Weight (kg/lbs) | 2,1 | 2,54 | 4,6 | 5,3 | | | | | 4.7 | 5.6 | 10.2 | 11.8 | | | Dimensions | Dimensione (mm/in) | Filter Size SFA | | | | |--------------------|------------------|------------------|------------------|------------------| | Dimensions (mm/in) | 014 | 030 | 045 | 070 | | b1 | 92 | 92 | 128 | 128 | | DI | 3.62 | 3.62 | 5.04 | 5.04 | | h0 | 23,8 | 23,8 | 31,6 | 31,6 | | b2 | .94 | .94 | 1.24 | 1.24 | | h0 | 50,8 | 50,8 | 66,7 | 66,7 | | b3 | 2.00 | 2.00 | 2.63 | 2.63 | | .14 | 72 | 72 | 100 | 100 | | d1 | 2.83 | 2.83 | 3.93 | 3.93 | | 40 | 86 | 86 | 117 | 117 | | d2 | 3.39 | 3.39 | 4.61 | 4.61 | | Ld | 187,5 | 255 | 241,5 | 301 | | h1 | 7.38 | 10.04 | 9.51 | 11.85 | | h2 | 78 | 145,5 | 105 | 164,5 | | 112 | 3.07 | 5.73 | 4.13 | 6.46 | | h3 | 40 | 40 | 49,5 | 49,5 | | IIS | 1.58 | 1.58 | 1.95 | 1.95 | | h4 | 12,5 | 12,5 | 12,5 | 12,5 | | 114 | .49 | .49 | .49 | .49 | | | Rec.* 100 | 170 | 140 | 200 | | h5 Min.* | 3.94 | 6.69 | 5.51 | 7.87 | | | Min * 85 | 85 | 120 | 120 | | | 3.35 | 3.35 | 4.72 | 4.72 | | Hex | 27 | 27 | 32 | 32 | | пех | 1.05 | 1.05 | 1.25 | 1.25 | | G2 | M10 x 15 | M10 x 15 | M14 x 20 | M14 x 20 | | G3 | 3/8-16 UNC x .59 | 3/8-16 UNC x .59 | 1/2-13 UNC x .59 | 1/2-13 UNC x .59 | Reference: Rec.*: Recommended | Min.*: Minimum | Dimensions SAE Flange | Filter Size SFA | | | | | |-----------------------|-----------------|-------------|-------------|-------------|--| | 3000 PSI (mm/in) | 014 | 030 | 045 | 070 | | | b4 | 22,2 | 22,2 | 47,6 | 47,6 | | | 04 | .87 | .87 | 1.87 | 1.87 | | | LF. | 30,2 | 30,2 | 58,7 | 58,7 | | | b5 | 1.19 | 1.19 | 2.32 | 2.32 | | | G4 | M10 x 15 or | M10 x 15 or | M14 x 17 or | M14 x 17 or | | | G4 | 3/8-16 UNC | 3/8-16 UNC | 7/8-14 UNC | 7/8-14 UNC | | ## **Medium Pressure Filter Housings / Complete Filters - Type SFA** ## Filter Elements - Type SE ### **Valves** #### **Product Description** HV-B The optional valves are fitted as an insert in the filter head and incorporate the spigot on which the element seals. The valve is selected to suit the filter application. HV-0 Non-bypass standard insert without any valve function. Element collapse rating should be higher than system pressure Bypass valve which allows oil to bypass the element when the differential pressure across the element reaches $6^{+0.5}$
bar / $87^{+7.25}$ PSI. (Other pressure settings available on request). The opening pressure should be higher than the Δp setting of an optional clogging indicator. Low collapse 30 bar / 435 PSI Δp elements are normally used with this valve. HV-R Reverse flow valve is used in systems where there is flow in reverse through the filter. It allows reverse flow without backflushing the element but does not filter in the reverse direction. Element collapse rating should be higher than the system pressure. HV-N Technical Data / Order Codes HV-M This valve prevents the oil in the delivery line from draining out while the filter is being serviced. Because there is no bypass, the element collapse rating should be higher than system pressure. #### **Multi-function valve** This valve combines the bypass, the reverse flow and the non-return functions in one unit. The by-pass opening pressure is $6^{+0.5}$ bar / $87^{+7.25}$ PSI Δp with other opening pressures available on request. The opening pressure should be higher than the Δp setting of an optional clogging indicator. Low collapse 30 bar / 435 PSI Δp elements are normally used with this valve. ### **Order Code** Flow characteristics of the valves see page C42 ## **Clogging Indicators** #### **Product Description** STAUFF Pressure Filters have a wide range of clogging indicators available. If no indicator is specified, the port is sealed by a plug (HI-O). The clogging indicators are actuated by the differential pressure (Δ p) across the element. The special piston design minimizes the effects of peak pressures in the system. An optional thermal lockout (thermo-stop) is available to prevent false indication under cold start conditions. Fluid temperature have to be at least +20 °C / +68 °F for the indicator to function. Special indicators with a temperature range down to -45 °C / -49 °F are available upon request. #### **Technical Data** Materials ■ Body: Stainless Steel ■ Sealings: NBR (Buna-N®) FPM (Viton®) EPDM (Ethylene-Propylene-Diene-Monomer-Rubber) Thread • G 1/2 **Differential Pressure** 5_{-0.5} bar / 72.5_{-7.25} PSI pressure setting (other settings on request) #### **Electrical** Plug according to DIN-EN 175301-803 A (DIN 43650-A). Screwed cable gland PG11, protection rating (DIN 40050) IP65, both NO and NC contacts are available in the switch, rated capacity: see chart below The visual clogging indicators are available in the following configurations: • Manual reset: The indicator continues to display the clogged signal even through the Δp may have fallen. Pressing the plastic cover down will reset the indicator. • Automatic reset: The clogged signal will disappear when the Δp drops below the setting for the indicator. Electrical and visual-electrical clogging indicators are only available with automatic reset. #### **Order Code** ## Dimensions ### Rated Capacity HI-E and HI-P Alternating current: 250 V AC 5 A Direct current: see table below | Voltage | Resistive Load | Inductive Load | |----------|----------------|----------------| | V | A | A | | 24 V DC | 8,00 | 7,00 | | 110 V AC | 0,50 | 0,20 | | 230 V AC | 0,25 | 0,10 | High voltage peaks occur when inductive loads are switched off. Protective circuitry should be employed to reduce contact burnout. ## High and Medium Pressure Filters • Type SF / SF-TM / SF-SM / SFZ / SFA Filter Elements SE Technical Data / Order Codes #### **Product Description** STAUFF SE series Replacement Filter Elements for SF / SF-TM / SF-SM / SFZ / SFA series filter housings are manufactured in the common filter materials such as Stainless Fibre, Stainless Mesh and Inorganic Glass Fibre. As standard, all Replacement Elements SE series have tin-plated steel parts for use with aggressive media such as water glycol, other materials available on request. All STAUFF Replacement Elements comply with quality specifications in accordance with international standards. #### **Order Code** ## High and Medium Pressure Filters • Type SF / SF-TM / SF-SM / SFA The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. Consult STAUFF for details. | Valve Configuration | Flow
direction | Curve | |---|-------------------|-------| | Housing with HV-O or HV-B | In → Out | Α | | HVM, HV-R, HV-N | In → Out | В | | HV-M, HV-B • Element 100% blocked Bypass only • In reality always mixed mode | In → Out | С | | HV-M,HV-R
Reverse mode | Out → In | D | ## High and Medium Pressure Filters - Type SF / SF-TM / SF-SM / SFA The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. Consult STAUFF for details. Flow Characteristics www.stauff.com ## High and Medium Pressure Filters • Type SF / SF-TM / SF-SM / SFA The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cst). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. Consult STAUFF for details. ## Pressure Filters • Type SIF48 ## **Product Description** STAUFF SIF48 series pressure filters are designed for in-line hydraulic applications with a maximum operating pressure of 345 bar / 5000 PSI. The element is changed from the top, which minimizes oil spillage. The SIF48 series pressure filter meets the HF4 Automotive Standard. #### **Technical Data** #### Construction In-line assembly, top loading, base mounted Filter base and cap: Ductile iron Element case: NBR (Buna-N®), FPM (Viton®) Sealings: #### **Port Connections** - BSP - NPT - SAE 0-ring thread - SAE code 61 flange or sub-plate ## Flow Rating Up to 380 l/min / 100 US GPM for 32 cSt / 150 SUS fluids, with 2" porting, 570 I/min / 150 US GPM #### **Operating Pressure** Max. 345 bar / 5000 PSI ## **Burst Pressure** Min. 1035 bar / 15000 PSI ## **Temperature Range** ■ -29°C ... +107°C / -20°F ... +225°F ## **Filter Elements** ■ Specifications see page C47 ## **Media Compatibility** • Mineral oils, other fluids on request ### **Options and Accessories** #### Valve Allows unfiltered oil to bypass the contaminated Bypass valve: element once the opening pressure has been reached 2,8 bar / 40 PSI Bypass setting: ## **Clogging Indicators** Standard actuating 2,4 bar / 35 PSI pressure: Available indicators: Visual, Electrical ## **Pressure Filters • Type SIF48** ## **Pressure Filter Housings / Complete Filters - Type SIF48** ## Filter Elements - Type SIF48 ## **Clogging Indicators** ## **Visual Clogging Indicator** Part number HI48-V is a mechanical magnetic cartridge with a highly visible red disk that pops up at 2,4 bar / 35 PSI. Once activated the red signal continues to indicate a bypass condition until it is manually reset. ### **Electrical Clogging Indicator** Part number HI48 are used when a electrical signal is needed to indicate when the element needs changing. The solid state switch is activated at 2,4 bar / 35 PSI. The indicators are supplied with 305 mm / 12 in long 4 wire cable, and meet NEMA4 and IP65 specifications. ## **Electrical Clogging Indicator - HI48-E Ratings** AC Rating DC Rating Voltage max 240 V AC max 100 V DC Wattage max 720 Watts max 50 Watts Current 0.10 to 6 amps 0.01 to 2 amps Contact type solid state solid state ## **Order Code** ## **Pressure Filters • Type SIF48 Flow Characteristics** The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. Consult STAUFF for details. ## Medium Pressure Filters • Type SMPF ## **Product Description** STAUFF SMPF Medium Pressure Filters are designed for in-line hydraulic applications with a maximum operating pressure of 110 bar / 1600 PSI. Used together with STAUFF Filter Elements, a high efficiency of contamination removal is assured. #### **Technical Data** #### Construction In-line assembly #### Materials Filter head: Aluminium Alloy Filter bowl: Aluminium Alloy NBR (Buna-N®) Sealings: ### **Port Connections** ■ SAE 0-ring thread #### Flow Rating ■ Up to 90 I/min / 25 US GPM ## **Operating Pressure** Max. 110 bar / 1600 PSI #### **Burst Pressure** ■ 300 bar / 4350 PSI ## **Temperature Range** - -25°C ... +110°C / -13°F ... +230°F ## **Filter Elements** • Specifications see page C54 ## **Media Compatibility** • Mineral oils, other fluids on request ### **Options and Accessories** #### Valve Allows unfiltered oil to bypass the contaminated Bypass valve: element once the opening pressure has been reached 6 bar / 87 PSI $\pm 10\%$ is the standard actuating pressure #### **Clogging Indicators** Standard actuating pressure: 5 bar / 72.5 PSI ±10% Available indicators: Visual Visual-electrical ## **Medium Pressure Filters - Type SMPF** ## **Medium Pressure Filters - Type SMPF** | Thread Connection G1 | Filter Size SMPF | | | | | |---------------------------------|------------------|--------|--|--|--| | Thread Connection G1 | 015 | 025 | | | | | Nominal Flow (I/min / US GPM) | 60 | 90 | | | | | Nominal Flow (I/IIIII / 03 dFW) | 15 | 25 | | | | | BSP | 1/2 | 1/2 | | | | | SAE 0-ring thread | 3/4–16 | 3/4–16 | | | | | Weight (kg/lb) | 0,95 | 1,25 | | | | | weight (kg/lb) | 2.09 | 2.76 | | | | | | Filter Size SMPF | | | | | |--------------------|------------------|------|--|--|--| | Dimensions (mm/in) | 015 | 025 | | | | | b1 | 80 | 80 | | | | | ы | 3.15 |
3.15 | | | | | b2 | 64 | 64 | | | | | 02 | 2.52 | 2.52 | | | | | d1 | 56 | 56 | | | | | ui | 2.20 | 2.20 | | | | | d2 | 76,5 | 76,5 | | | | | uz | 3.01 | 3.01 | | | | | h1 | 157 | 244 | | | | | | 6.18 | 9.61 | | | | | h2 | 79 | 166 | | | | | 112 | 3.11 | 6.54 | | | | | h3 | 27 | 27 | | | | | 113 | 1.06 | 1.06 | | | | | h4 | 78 | 78 | | | | | 114 | 3.07 | 3.07 | | | | | h5 | 60 | 60 | | | | | 113 | 2.36 | 2.36 | | | | | h6 | 17 | 17 | | | | | 110 | .67 | .67 | | | | | G2 | 7 | 7 | | | | | u. | .28 | .28 | | | | ## Medium Pressure Filter Housings / Complete Filters - Type SMPF ## Filter Elements • Type SME ## **Medium Pressure Filters • Type SMPF** **Clogging Indicators** ## **Visual Clogging Indicator** Part number HIM-V is a clogging indicator actuated by the differential pressure across the filter element. The actuating pressure of 5 bar / 72.5 PSI allows the dirty element to be changed before the bypass setting of 6 bar / 87 PSI is reached. ## **Visual-Electrical Clogging Indicator** Part number HIM-VE is used when an electrical signal is needed to indicate when the element needs changing. It is actuated by the differential pressure across the filter element. The actuating pressure of 5 bar / 72.5 PSI allows the dirty element to be changed before the bypass setting of 6 bar / 87 PSI is reached. Dimensions in mm / in ## **HIM-VE Rated Capacity** | Voltage
V | Resistive Load
A | Inductive Load
A | |--------------|---------------------|---------------------| | 125 V AC | 5 | 5 | | 250 V AC | 5 | 5 | | 15 V AC | 10 | 10 | | 30 V DC | 5 | 5 | | 50 V DC | 1 | 1 | | 125 V DC | 0.50 | 0.06 | ## **Order Code** ## Medium Pressure Filters • Type SMPF Flow Characteristics The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. Consult STAUFF for details. ## Return Line Filters • Type SRFL-S / D ### **Product Description** STAUFF Return Line Simplex Filters SRFL-S and Duplex Filters SRFL-D are designed for in-line hydraulic applications. With its compact construction and the easy to maintain assembly the SRFL-S and SRFL-D Filters are suitable for flow rates up to 7000 l/min / 1850 US GPM. The two housings of the Duplex Filter SRFL-D are connected with a special gate valve that is operated with a level or hand wheel. Therefore the filter may be serviced without shutting down the hydraulic system. A high efficiency of contaminant removal is assured by using STAUFF RE series Replacement Filter Elements. The high dirt-hold capacity of STAUFF Elements ensures a long service life and, as a result, reduced maintenance costs. #### **Technical Data** #### Construction In-line assembly, base mounted #### **Materials** • Filter housing: Carbon Steel Stainless Steel (on request) Sealings: NBR (Buna-N®) FPM (Viton®) Other sealing materials on request #### **Port Connection** - DIN flange - ANSI flange - SAE flange #### **Operating Pressure** Max. 14 bar / 200 PSI ## Flow Rating ■ Up to 7000 I/min / 1850 US GPM ## **Temperature Range** ■ -10°C ... +100°C / +14°F ... +212°F ## **Filter Elements** • Specifications see page C69 ## **Media Compatibility** . Mineral oils, lubrication oils, other fluids on request #### **Options and Accessories** #### Valve Bypass valve: Opening pressure 3 bar \pm 0,3 bar / 43.5 PSI \pm 4.35 PSI (integrated in the Other settings available on request filter element) #### **Clogging Indicators** Differential pressure switch, setting 1,6 bar / 23 PSI Other clogging indicators available on request | | Flow | Flange | - | | Filter Elem | ent quantity | Arrangement | | |---------------|------------------|-------------|---------------|-----------------|-------------|--------------|-----------------------|---------| | Filter Size | I/min/
US GPM | DIN
2501 | ANSI
B16.5 | SAE
3000 PSI | SRFL-S | SRFL-D | of filter
elements | Page | | SRFL-S/D-160 | 900/240 | DN 40 | 1-1/2 | 1-1/2 | 1x RE-160 | 2x RE-160 | | | | SRFL-S/D-200 | 900/240 | DN 50 | 2 | 2 | 1x RE-200 | 2x RE-200 | | C58/C62 | | SRFL-S/D-300 | 1400/370 | DN 65 | 2-1/2 | 2-1/2 | 1x RE-300 | 2x RE-300 | | 000/002 | | SRFL-S/D-600 | 1400/370 | DN 80 | 3 | 3 | 1x RE-600 | 2x RE-600 | | | | SRFL-S/D-1200 | 4000/1050 | DN 100 | 4 | 4 | 2x RE-600 | 4x RE-600 | | | | SRFL-S/D-1800 | 4000/1050 | DN 125 | 5 | 5 | 3x RE-600 | 6x RE-600 | | C60/C64 | | SRFL-S/D-2400 | 6000/1580 | DN 150 | 6 | 6 | 4x RE-600 | 8x RE-600 | | | | SRFL-S/D-3600 | 7000/1850 | DN 200 | 8 | 8 | 6x RE-600 | 12x RE-600 | | C60/C66 | ## Return Line Filters • Type SRFL-S 160 / 200 / 300 / 600 ## Return Line Filters • Type SRFL-S 160 / 200 / 300 / 600 | Florgo Connection | Filter Size SRFL-S | | | | | |-------------------|--------------------|-------|-------|-------|--| | Flange Connection | 160 | 200 | 300 | 600 | | | DIN | DN 40 | DN 50 | DN 65 | DN 80 | | | ANSI | 1-1/2 | 2 | 2-1/2 | 3 | | | SAE | 1-1/2 | 2 | 2-1/2 | 3 | | | Discouries (see fig.) | | Filter Size SRFL-S | | | | |----------------------------|-------------|--------------------|--------|--------|--------| | Dimensions (mm | /in) | 160 | 200 | 300 | 600 | | | | 885,8 | 1045,8 | 1248,7 | 2126,7 | | Α | | 34.87 | 41.17 | 49.16 | 83.73 | | D | | 607,6 | 688,7 | 828,6 | 1267,6 | | В | | 23.92 | 27.12 | 32.63 | 49.91 | | 0 | | 584 | 664 | 803,9 | 1242,9 | | С | | 22.99 | 26.14 | 31.65 | 48.93 | | D | | 214 | 214 | 285 | 285 | | D | | 8.43 | 8.43 | 11.22 | 11.22 | | _ | | 148 | 148 | 198 | 198 | | E | | 5.83 | 5.83 | 7.80 | 7.80 | | | | 130 | 140 | 150 | 160 | | Н | | 5.12 | 5.51 | 5.91 | 6.30 | | | | 155 | 190 | 190 | 220 | | ı | | 6.10 | 7.48 | 7.48 | 8.66 | | К | | 150 | 150 | 240 | 240 | | N. | | 5.91 | 5.91 | 9.45 | 9.45 | | L | | 125 | 125 | 200 | 200 | | L | | 4.92 | 4.92 | 7.87 | 7.87 | | M | | 125 | 125 | 200 | 200 | | М | | 4.92 | 4.92 | 7.87 | 7.87 | | N | | 150 | 150 | 240 | 240 | | N | | 5.91 | 5.91 | 9.45 | 9.45 | | 0 | | 11 | 11 | 18 | 18 | | 0 | | .43 | .43 | .71 | .71 | | Total Oil Consoits | (I/aol) | 6,0 | 7,1 | 22,2 | 37,1 | | Total Oil Capacity (I/gal) | | 1.59 | 1.86 | 5.87 | 9.80 | | Moight (kg/lks) | | 14,5 | 15,9 | 29 | 34,5 | | Weight (kg/lbs) | | 32 | 35 | 64 | 76 | | Filtor Flomosts | Designation | RE-160 | RE-200 | RE-300 | RE-600 | | Filter Elements | Quantity | 1 x 1 | 1 x 1 | 1 x 1 | 1 x 1 | ## Return Line Filters • Type SRFL-S 1200 / 1800 / 2400 / 3600 ## Return Line Filters • Type SRFL-S 1200 / 1800 / 2400 / 3600 | Florida Connection | Filter Size SRFL-S | | | | | |--------------------|--------------------|--------|--------|--------|--| | Flange Connection | 1200 | 1800 | 2400 | 3600 | | | DIN | DN 100 | DN 125 | DN 150 | DN 200 | | | ANSI | 4 | 5 | 6 | 8 | | | SAE | 4 | 5 | 6 | 8 | | | Dimensione (mm/lim) | Filter Size SRFL-S | | | | |----------------------------|--------------------|--------|--------|--------| | Dimensions (mm/in) | 1200 | 1800 | 2400 | 3600 | | | 2176,7 | 2176,7 | 2249,1 | 2249,1 | | l | 85.70 | 85.70 | 88.55 | 88.55 | | | 1319,6 | 1323,6 | 1394,8 | 1392,8 | | 3 | 51.96 | 52.11 | 54.92 | 54.84 | | , | 1294,6 | 1294,9 | 1366,1 | 1368,1 | | | 50.98 | 50.98 | 53.78 | 53.86 | |) | 275 | 275 | 325 | 325 | | | 10.83 | 10.83 | 12.80 | 12.80 | | | 273 | 273 | 298 | 398 | | | 10.75 | 10.75 | 11.73 | 15.67 | | | 190 | 190 | 200 | 252 | | | 7.48 | 7.48 | 7.87 | 9.92 | | | 250 | 280 | 320 | 425 | | | 9.84 | 11.02 | 12.6 | 16.73 | | | 385 | 385 | 435 | 540 | | • | 15.16 | 15.16 | 17.13 | 21.26 | | | 325 | 325 | 375 | 480 | | | 12.80 | 12.80 | 14.76 | 18.90 | | 1 | 325 | 325 | 375 | 480 | | | 12.80 | 12.80 | 14.76 | 18.90 | | | 385 | 385 | 435 | 540 | | | 15.16 | 15.16 | 17.13 | 21.26 | | | 23 | 23 | 23 | 23 | | | .91 | .91 | .91 | .91 | | | 60 | 60 | 60 | 60 | | | 2.36 | 2.36 | 2.36 | 2.36 | | otal Oil Capacity (I/gal) | 103 | 103 | 149 | 232 | | nai oii oapaoity (i/yai) | 27.21 | 27.21 | 39.37 | 61.30 | | loight (kg/lhc) | 86,2 | 90,7 | 105,2 | 154,2 | | leight (kg/lbs) | 190 | 200 | 232 | 340 | | ilter Elements Designation | n RE-600 | RE-600 | RE-600 | RE-600 | | Quantity | 1 x 2 | 1 x 3 | 1 x 4 | 1 x 6 | ## Return Line Filters = Type SRFL-D 160 / 200 / 300 / 600 ## Return Line Filters • Type SRFL-D 160 / 200 / 300 / 600 | Flange Connection | Filter Size SRFL-D | | | | |-------------------|--------------------|-------|-------|-------| | | 160 | 200 | 300 | 600 | | DIN | DN 40 | DN 50 | DN 65 | DN 80 | | ANSI | 1-1/2 | 2 | 2-1/2 | 3 | | Dimensione (mm/in) | Filter Size SRFL-D | | | | |---------------------------|--------------------|--------|--------|--------| | Dimensions (mm/in) | 160 | 200 | 300 | 600 | | | 885,8 | 1045,8 | 1248,7 | 2126,7 | | | 34.87 | 41.17 | 49.16 | 83.73 | | | 607,6 | 688,7 | 828,6 | 1267,6 | | } | 23.92 | 27.12 | 32.63 | 49.91 | | | 584 | 642 | 803,9 | 1242,9 | | | 22.99 | 25.28 | 31.65 | 48.93 | | | 214 | 214 | 285 | 285 | | | 8.43 | 8.43 | 11.22 | 11.22 | | | 260 | 300 | 350 | 375 | | | 10.24 | 11.81 | 13.78 | 14.76 | | | 520 | 600 | 700 | 750 | | | 20.47 | 23.62 | 27.56 | 29.53 | | | 130 | 140 | 150 | 160 | | | 5.12 | 5.51 | 5.91 | 6.30 | | | 155 | 190 | 190 | 220 | | | 6.10 | 7.48 | 7.48 | 8.66 | | , | 150 | 150 | 240 | 240 | | | 5.91 | 5.91 | 9.45 | 9.45 | | | 125 | 125 | 200 | 200 | | | 4.92 | 4.92 | 7.87 | 7.87 | | • | 125 | 125 | 200 | 200 | | I | 4.92 | 4.92 | 7.87 | 7.87 | | | 150 | 150 | 240 | 240 | | | 5.91 | 5.91 | 9.45 | 9.45 | |) | 11 | 11 | 18 | 18 | | | .43 | .43 | .71 | .71 | | , | 110 | 150 | 150 | 175 | | | 4.33 | 5.91 | 5.91 | 6.89 | | .t-1 Oil Oit- (1/1) | 6 | 7,1 | 22,2 | 37,1 | | otal Oil Capacity (I/gal) | 1.59 | 1.86 | 5.87 | 9.80 | | loight (kg/lha) | 43 | 56,7 | 84 | 104 | | Veight (kg/lbs) | 95 | 125 | 185 | 230 | | Designation | | RE-200 | RE-300 | RE-600 | | ilter Elements Quantity | 2 x 1 | 2 x 1 | 2 x 1 | 2 x 1 | ## Return Line Filters • Type SRFL-D 1200 / 1800 / 2400 ## Return Line Filters
• Type SRFL-D 1200 / 1800 / 2400 | Flange Connection | Filter Size SRFL-D | | | | |-------------------|--------------------|--------|--------|--| | | 1200 | 1800 | 2400 | | | DIN | DN 100 | DN 125 | DN 150 | | | ANSI | 4 | 5 | 6 | | | Dimensions (mm/ir) | Filter Size SRFL-D | Filter Size SRFL-D | | | | |---------------------------|--------------------|--------------------|--------|--|--| | Dimensions (mm/in) | 1200 | 1800 | 2400 | | | | | 2176,7 | 2176,7 | 2249,1 | | | | I | 85.70 | 85.70 | 88.55 | | | | , | 1319,6 | 1323,6 | 1394,8 | | | | 3 | 51.96 | 52.11 | 54.92 | | | | | 1294,9 | 1294,9 | 1366,1 | | | | ; | 50.98 | 50.98 | 53.78 | | | | | 275 | 275 | 325 | | | |) | 10.83 | 10.83 | 12.80 | | | | | 475 | 500 | 540 | | | | | 18.70 | 19.69 | 21.26 | | | | | 950 | 1000 | 1080 | | | | à | 37.40 | 39.37 | 42.52 | | | | | 190 | 190 | 200 | | | | ł | 7.48 | 7.48 | 7.87 | | | | | 250 | 280 | 320 | | | | | 9.84 | 11.02 | 12.60 | | | | | 385 | 385 | 435 | | | | | 15.16 | 15.16 | 17.13 | | | | | 325 | 325 | 375 | | | | | 12.80 | 12.80 | 14.76 | | | | | 325 | 325 | 375 | | | | 1 | 12.80 | 12.80 | 14.76 | | | | | 385 | 385 | 435 | | | | I | 15.16 | 15.16 | 17.13 | | | | | 23 | 23 | 23 | | | |) | .91 | .91 | .91 | | | | | 200 | 225 | 240 | | | | • | 7.87 | 8.86 | 9.45 | | | | | 60 | 60 | 60 | | | | | 2.36 | 2.36 | 2.36 | | | | | 103 | 103 | 149 | | | | otal Oil Capacity (I/gal) | 27.20 | 27.20 | 39.30 | | | | | 215 | 233 | 263 | | | | Veight (kg/lbs) | 475 | 515 | 580 | | | | Designat | | RE-600 | RE-600 | | | | ilter Elements Ouantity | | 2 v 3 | 2 v / | | | ## **Return Line Filters - Type SRFL-D 3600** ## Return Line Filters • Type SRFL-D 3600 | Flance Commention | Filter Size SRFL-D | |-------------------|--------------------| | Flange Connection | 3600 | | DIN | DN 200 | | ANSI | 8 | | Dimensions (mn | a/in) | Filter Size SRFL-D | |----------------------------|-------------|--------------------| | Dimensions (min | 1/111) | 3600 | | Δ. | | 2249,1 | | Α | | 88.55 | | В | | 1392,8 | | В | | 54.84 | | • | | 1368,1 | | С | | 53.86 | | D | | 325 | | D | | 12.80 | | E | | 739 | | | | 29.11 | | G | | 1479 | | u | | 58.22 | | Н | | 252 | | " | | 9.92 | | ı | | 425 | | <u> </u> | | 16.73 | | K | | 540 | | | | 21.26 | | L | | 480 | | _ | | 18.90 | | M | | 480 | | | | 18.90 | | N | | 540 | | | | 21.26 | | 0 | | 23 | | | | .91 | | P | | 281,4 | | • | | 11.08 | | R | | 60 | | | | 2.36 | | Total Oil Capacity (I/gal) | | 233 | | .o.a. on oupdon | , (., gui) | 61.3 | | Weight (kg/lbs) | | 390 | | | | 860 | | Filter Elements C | Designation | RE-600 | | | Quantity | 2 x 6 | ## Return Line Filter Housings / Complete Filters - Type SRFL-S / D ## Filter Elements - Type RE ## Return Line Filters - Type SRFL-S / D Filter Elements and Clogging Indicator ## **Product Description** STAUFF Replacement Filter Elements for SRFL-S and SRFL-D Series Filters are manufactured in the common filter materials such as Stainless Fibre, Stainless Mesh, Cellulose and Inorganic Glass Fibre. As standard all Replacement Elements series RE have tin plated steel parts for use with aggressive media such as water glycol, upon request you also can get other materials. All Replacement Elements made by STAUFF comply with quality specifications in accordance with international standards. ## **Order Code** | 1 | Туре | | | | | | |---|-------------------------------|-------------|---------|------|--|--| | | Filter Element Se | eries | | RE | | | | | | | | | | | | 2 | Group | | | | | | | | According to filte | er housing | | | | | | | Note: See order code page C68 | | | | | | | | | | | | | | | 3 | 3 Filter Material | | | | | | | | | Max. | Micron | | | | | | Material | | ratings | Code | | | | | Material | Δp*collapse | ratings | Code | | | | Fliter Material | | | | |---|---------------------|--------------------------------|------| | Material | Max.
Δp*collapse | Micron
ratings
available | Code | | Inorg. glass fibre | 25 bar / 363 PSI | 3, 5, 10, 20 | G | | Stainless fibre | 30 bar / 435 PSI | 3, 3, 10, 20 | Α | | Filter paper | 10 bar / 145 PSI | 10, 20 | N | | Stainless mesh | 30 bar / 435 PSI | 25, 50,
100, 200 | S | | * Note: Collance/hurst resistance as nor ISO 2041 | | | | * Note: Collapse/burst resistance as per ISO 2941. Other materials on request. | 4 | Micron Rating | | |---|--|-----| | | 3 μm | 03 | | | 5 μm | 05 | | | 10 μm | 10 | | | 20 μm | 20 | | | 25 μm | 25 | | | 50 μm | 50 | | | 100 μm | 100 | | | 200 μm | 200 | | | Note: Other micron ratings on request. | | ## 5 Sealing Material | NBR (Buna®) | | |---|--| | FPM (Viton®) | | | Note: Other sealing materials on request. | | # 6 Design Code Only for information ## **Differential Pressure Switch with Visual Gauge Indicator** The switch is used to indicate when the elements need changing. The switch can turn on a light, shut down the machine or any further function controlled by an electrical signal. The gauge visually indicates the differential pressure across the filter elements. #### Diameter ■ 100 mm / 3.94 in #### Scale ■ 0 ... 1,6 kg/cm² ### **Connection Thread** ■ G1/4 #### **Operating Pressure** Max. 200 bar / 2900 PSI ## Temperature Range ■ -20 °C ... +80 °C / -4 °F ... +176 °F #### Materials Body: Aluminium Lens: Glass Sealing Material: NBR (Buna-N®) FPM (Viton®) ## Protection Rating IP 65: Dust tight and protected against water jets. #### **Switch Voltage** ■ Max. 28 V AC/DC ## **Current On Contact** ■ Max. 0,25 A #### **Contact Rating** ■ 5 VA AC/DC ## STAUFF ## **Return Line Filters • Type SRFL-S / D Flow Characteristics** The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Consult STAUFF for details. ## Return Line Filters - Type RF ## **Product Description** STAUFF RF Return Line Filters are designed as tank top filters. They are mounted directly on the tank top and when 100% of the system's oil is filtered they provide the optimum removal of contaminant from the system. This provides the pump with clean oil thus reducing contaminant generated wear. The filter bowl is designed to return the oil beneath the surface thus preventing the entrainment of air by the returning oil. A high efficiency of contaminant removal is assured by using STAUFF RE Replacement Filter Elements. The high dirt-hold capacity of STAUFF Elements ensures a long service life and as a result reduced maintenance costs. ### **Technical Data** #### Construction Tank Top flange mounting #### Materials • Filter head: Aluminium Glass Fibre reinforced Polyamide • Filter bowl: Sealings: NBR (Buna-N®) FPM (Viton®) EPDM (Ethylene-Propylene-Diene-Monomer-Rubber) Other sealing materials on request #### **Port Connection** - BSP NPT - SAE 0-ring thread - SAE flange 3000 PSI #### **Operating Pressure** Max. 16 bar / 232 PSI ## **Temperature Range** -10°C ... +100°C / +14°F ... +212°F #### **Filter Elements** Specifications see page C74 ## **Media Compatibility** Mineral oils, other fluids on request ## **Options and Accessories** #### Valve Opening pressure 3 bar \pm 0,3 bar / 43.5 PSI \pm 4.35 PSI Bypass valve (integrated in the Other settings available on request filter element) #### **Clogging Indicators** - Visual clogging indicator 0 ... 4 bar / 0 ... 58 PSI coloured segments - Electrical clogging switch, setting 2,5 bar / 36.25 PSI Other clogging indicators available on request ## Return Line Filters • Type RF # Return Line Filters • Type RF | Thread Connection G | Filter Size RF | Iter Size RF | | | | | | | |------------------------|----------------|--------------|----------|----------|----------|----------|--|--| | Tilleau Collifection u | 014 | 030 | 045 | 070 | 090 | 130 | | | | BSP | 3/4 | 1 | 1-1/4 | 1-1/2 | 2 | 2 | | | | NPT | 3/4 | 1 | 1-1/4 | 1-1/2 | 2 | 2 | | | | SAE 0-ring Thread | 1-1/16-12 | 1-5/16-12 | 1-5/8-12 | 1-7/8–12 | 1-7/8-12 | 1-7/8-12 | | | | SAE Flange 3000 PSI | - | - | - | - | 2 | 2 | | | | 5 | Filter Size RF | Filter Size RF | | | | | | | | | |--------------------|---------------------|---------------------|------------------------|------------------------|------------------------|------------------------|--|--|--|--| | Dimensions (mm/in) | 014 | 030 | 045 | 070 | 090 | 130 | | | | | | | 89 | 89 | 120 | 120 | 150 | 150 | | | | | | b1 | 3.50 | 3.50 | 4.72 | 4.72 | 5.91 | 5.91 | | | | | | | 80 | 80 | 110 | 110 | 135 | 135 | | | | | | b2 | 3.15 | 3.15 | 4.33 | 4.33 | 5.31 | 5.31 | | | | | | | | | | | 88 | 88 | | | | | | b3 | - | - | - | - | 3.47 | 3.47 | | | | | | | | | | | 102 | 102 | | | | | | b4 | - | - | - | - | 4.02 | 4.02 | | | | | | b5 | | | | | 42,9 | 42,9 | | | | | | ມວ | - | - | - | - | 1.69 | 1.69 | | | | | | b6 | | | | | 77,8 | 77,8 | | | | | | DO . | | | | | 3.06 | 3.06 | | | | | | d1 | 73 | 73 | 100 | 100 | 126 | 126 | | | | | | ui | 2.87 | 2.87 | 3.94 | 3.94 | 4.96 | 4.96 | | | | | | d2 | 57,5 | 57,5 | 84 | 84 | 112,5 | 112,5 | | | | | | uz | 2.26 | 2.26 | 3.31 | 3.31 | 4.43 | 4.43 | | | | | | d3 | 36 | 36 | 48 | 48 | 54,5 | 54,5 | | | | | | uo | 1.42 | 1.42 | 1.89 | 1.89 | 2.15 | 2.15 | | | | | | d4 | 100 | 100 | 135 | 135 | 170 | 170 | | | | | | u 4 | 3.94 | 3.94 | 5.31 | 5.31 | 6.69 | 6.69 | | | | | | d5 | 78 | 78 | 105 | 105 | 131 | 131 | | | | | | uo | 3.07 | 3.07 | 4.13 | 4.13 | 5.16 | 5.16 | | | | | | h1 | 33 | 33 | 41 | 41 | 47 | 47 | | | | | | h1 | 1.30 | 1.30 | 1.61 | 1.61 | 1.85 | 1.85 | | | | | | h2 | 66 | 66 | 86 | 86 | 98 | 98 | | | | | | 112 | 2.60 | 2.60 | 3.39 | 3.39 | 3.86 | 3.86 | | | | | | h3 | 91,5 | 159,5 | 119 | 180 | 172,5 | 252,5 | | | | | | 110 | 3.60 | 6.28 | 4.69 | 7.09 | 6.79 | 9.94 | | | | | | h4 |
157,5 | 225,5 | 206 | 267 | 273,5 | 353,5 | | | | | | 117 | 6.20 | 8.88 | 8.11 | 10.51 | 10.77 | 13.91 | | | | | | h5 | 23,5 | 23,5 | 24 | 24 | 27 | 27 | | | | | | 110 | .93 | .93 | .95 | .95 | 1.06 | 1.06 | | | | | | h6 | 140 | 210 | 180 | 240 | 235 | 315 | | | | | | | 5.51 | 8.27 | 7.09 | 9.45 | 9.25 | 12.40 | | | | | | 11 | 48 | 48 | 66 | 66 | 85 | 85 | | | | | | · · | 1.89 | 1.89 | 2.60 | 2.60 | 3.35 | 3.35 | | | | | | G2 | G1 or
1 NPT | G1 or
1 NPT | G1-1/4 or
1-1/4 NPT | G1-1/4 or
1-1/4 NPT | G1-1/2 or
1-1/2 NPT | G1-1/2 or
1-1/2 NPT | | | | | | G3 | | _ | | | 1/2 UNC x 15 | 1/2 UNC x 15 | | | | | | uu | | | | | 1/2 UNC x .59 | 1/2 UNC x .59 | | | | | | G4 | M6 or
1/4–20 UNC | M6 or
1/4–20 UNC | M8 or 5/16–18 UNC | M8 or 5/16–18 UNC | M10 or
3/8–16 UNC | M10 or
3/8–16 UNC | | | | | | Hex | 36
1.42 | 36
1.42 | 50
1.97 | 50
1.97 | 55
2.16 | 55
2.16 | | | | | Filtration Technology # Return Line Filter Housings / Complete Filters • Type RF 1 Type Return Line Filter RF 2 Group Flow Size 60 l/min / 14 US GPM 014 110 l/min / 30 US GPM 030 160 l/min / 45 US GPM 045 240 l/min / 70 US GPM 070 330 l/min / 90 US GPM 090 500 l/min / 130 US GPM 130 Note: Exact flow will depend on filter element selected. Consult technical data on pages C76 / C77. ## 3 Filter Material | Material | max.
Δp*collapse | Micron
ratings
available | Code | |---------------------------|---------------------|--------------------------------|------| | Without filter
element | - | - | | | Inorg. glass fibre | 25 bar / 363 PSI | 2 5 10 20 | G | | Stainless fibre | 30 bar / 435 PSI | 3, 5, 10, 20 | Α | | Filter paper | 10 bar / 145 PSI | 10, 20 | N | | Stainless mesh | 30 bar / 435 PSI | 25, 50,
100, 200 | S | Note: *Collapse/burst resistance as per ISO 2941. Other materials on request. # 4 Micron Rating | 7 | Wilcivii nauliy | | |---|--|-----| | | 3 μm | 03 | | | 5 μm | 05 | | | 10 μm | 10 | | | 20 μm | 20 | | | 25 μm | 25 | | | 50 μm | 50 | | | 100 μm | 100 | | | 200 μm | 200 | | | Note: Other micron ratings on request. | | # 5 Sealing Materials | , | Scalling Matchais | | |---|--|---| | | NBR (Buna®) | В | | | FPM (Viton®) | ۷ | | | EPDM | E | | | Note: Other sealing materials on request | | # 6 Connection Style | Connection Ctule | Group | Group | | | | | | | |---------------------|--------|--------|-------|-------|-------|-------|------|--| | Connection Style | 014 | 030 | 045 | 070 | 090 | 130 | Code | | | BSP | 3/4 | 1 | 1-1/4 | 1-1/2 | 2 | 2 | В | | | BSP | 1/2 | 1/2 | 1-1/2 | 1-1/4 | 1-1/4 | 1-1/4 | B1 | | | BSP | 1 | 3/4 | - | - | 1-1/2 | 1-1/2 | B2 | | | NPT | 3/4 | 1 | 1-1/4 | 1-1/2 | 2 | 2 | N | | | NPT | 1 | 3/4 | 1-1/2 | 1-1/4 | 1-1/2 | 1-1/2 | N1 | | | SAE O-ring Thread | 1-1/16 | 1-5/16 | 1-5/8 | 1-7/8 | 1-7/8 | 1-7/8 | U | | | SAE O-ring Thread | 1-5/16 | 1-1/16 | 1-7/8 | 1-5/8 | 1-5/8 | 1-5/8 | U1 | | | SAE Flange 3000 PSI | - | - | - | - | 2 | 2 | F | | Note: Bold types identify preferred connection styles. #### 7 Clogging Indicator | | Posi | tion^ | | |-------------------------------------|------|-------|-------| | Without Clogging Indicator | - | | 0 | | Visual Clogging Indicator | | | M | | Electrical Clogging Switch 42 V, NO | | | G42N0 | | Electrical Clogging Switch 42 V, NC | | | G42NC | | Electrical Clogging Switch 110 V, | 1 | 2 | G110 | | two-way contact | | | dilo | | Electrical Clogging Switch 230 V, | | | G230 | | two-way contact | | | UZ30 | | | | | _ | Note: *Position of clogging indicator see page C75. Without any code: assembly in the middle of the filter cover. # 9 Additional Features 8 Outlet Style Standard outlet (without thread) Filter bowl with threaded outlet | | Position* | | | |--------------------------------|-----------|---|------| | Without leakage oil connection | - | | none | | Leakage oil connection | 1 | 2 | L | Note: *Position of the leakage oil connection see page C75 Without any code: assembly in the middle of the filter cover. # 10 Design Code Only for information # Filter Elements • Type RE 1 Type Filter Element Series 2 Group According to filter housing ## 3 Filter Material | Material | Max.
Δp*collapse | Micron
ratings
available | Code | |--------------------|---------------------|--------------------------------|------| | Inorg. glass fibre | 25 bar / 363 PSI | 3, 5, 10, 20 | G | | Stainless fibre | 30 bar / 435 PSI | 3, 3, 10, 20 | Α | | Filter paper | 10 bar / 145 PSI | 10, 20 | N | | Stainless mesh | 30 bar / 435 PSI | 25, 50,
100, 200 | s | Note: *Collapse/burst resistance as per ISO 2941. Other materials on request. # 4 Micron Rating | 3 μm | 03 | |---------------------------------------|-----| | 5 μm | 05 | | 10 μm | 10 | | 20 μm | 20 | | 25 μm | 25 | | 50 μm | 50 | | 100 μm | 100 | | 200 μm | 200 | | Note: Other micron ratings on request | | 5 Sealing Materials | NBR (Buna®) | E | |---|---| | FPM (Viton®) | ١ | | EPDM | I | | Note: Other sealing materials on request. | | Note: Other sealing materials on reques # 6 Design Code Only for information # Return Line Filters • Type RF # **Visual Clogging Indicator** The gauge visually displays the degree of contamination of the element. The colored segments allow quick visual checking. green 0 ... 2,5 bar / 0 ... 36.25 PSI yellow 2,5 ... 3,0 bar / 36.25 ... 43.5 PSI Element has service life left red >3,0 bar / >43.5 PSI Element is contaminated and should be changed Bypass valve open, unfiltered oil passing to tank # **Electrical Clogging Switch** The switch is used where an electrical signal is needed to indicate when the element needs changing. The switch can turn on a light, or shut the machine down, or any further function controlled by an electric signal. The switching pressure is 2,5 bar / 36.25 PSI and this allows the element to be changed before the bypass setting of 3 bar / 43.5 PSI is reached. Maximum Voltage Switch Type 42 V (normally open) G42NO 42 V (normally closed) G42NC 110 V (two-way contact) G110 230 V (two-way contact) G230 # **Filter Bowl with Threaded Connection** Under some circumstances such as a tall reservoir or one with oil levels which vary greatly during operation, it is necessary to extend the filter bowl so that the returning oil returns beneath the surface and does not entrain air in the process. The optional bowl with a female thread allows an extension to be fitted quite simply. The one piece design also allows for inline applications. #### **Leakage Oil Connection** Seal or case drain lines can be connected to the filter through either of the clogging indicator ports providing that the leakage oil can accept a pressure of 3 bar / 43.5 PSI. It ensures that no unfiltered oil can return to the reservoir. # **Filter Bowl with Threaded Connection and Diffuser** Diffusers mounted to the filter bowl minimise foaming and reduce noise of high return line flows. For further details on STAUFF Diffusers please refer to the "Hydraulic Accessories" section on page E46. Attention: Connection pipe not included in scope of delivery! | Size SRV | for Return Line | Dimensions (mm/in) | | | | | |-------------|-----------------|--------------------|------|-----------|------|--| | SIZE SINV | Filter Size | øD | L | Thread G | Hex | | | SRV-114-B16 | RF 014/030 | 60 | 139 | G1 | 46 | | | SRV-114-N16 | NF U14/U3U | 2.36 | 5.47 | 1 NPT | 1.81 | | | SRV-200-B20 | RF 045/070 | 82 | 139 | G1-1/4 | 60 | | | SRV-200-N20 | NF 043/070 | 3.23 | 5.47 | 1-1/4 NPT | 2.36 | | | SRV-227-B24 | DE 000/120 | 82 | 200 | G1-1/2 | 60 | | | SRV-227-N24 | RF 090/130 | 3.23 | 7.87 | 1-1/2 NPT | 2.36 | | Dimensions in mm/in # **Return Line Filters • Type RF Flow Characteristics** The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Consult STAUFF for details. # **Return Line Filters • Type RF Flow Characteristics** The following characteristics are valid for mineral oils with a density of 0,85 kg/dm3 and the kinematic viscosity of 30 mm2/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Consult STAUFF for details. # **Return Line Filters • Type RFA** # **Product Description** STAUFF RFA Return Line Filters are a one piece design and can be used as a tank top or an in-line filter. They are mounted in the return line and if 100% of the system oil is filtered, provide the optimum removal of contaminant for the systems. This provides the pump with clean oil, thus reducing contaminant generated wear. A high efficiency of contaminant removal is assured by using STAUFF RE Replacement Filter Elements. The high dirt-hold capacity of STAUFF Elements ensures a long service life and as a result reduced maintenance costs. #### **Technical Data** #### Construction • Tank Top or in-line mounting #### Materials Filter housing: Aluminium Sealings: NBR (Buna-N®) FPM (Viton®) EPDM (Ethylene Propylene Diene Monomer Rubber) Other sealing materials on request #### **Port Connection** SAE 0-ring thread #### **Operating Pressure** Max. 25 bar / 365 PSI #### Temperature Range ■ -10°C ... +100°C / +14°F ... +212°F # Filter Elements Specifications see page C82 # Media Compatibility • Mineral oils, other fluids on request # **Options and Accessories** ## Valve $\begin{tabular}{ll} \blacksquare & Bypass valve & Opening pressure 3 bar ± 0.3 bar $/ 43.5$ PSI ± 4.35 PSI $ (integrated in the filter element) \\ \end{tabular}$ #### **Clogging Indicators** - Visual clogging indicator 0 ... 4 bar / 0 ... 58 PSI coloured segments -
Electrical clogging switch, setting 2,5 bar / 36.25 PSI Other clogging indicators available on request **C79** # Return Line Filters • Type RFA # Return Line Filters • Type RFA | Thread Connection G | Filter Size RFA030 | |----------------------|--------------------| | SAE 0-ring Thread U | 1-1/16–12 | | SAE O-ring Thread U1 | 3/4–16 | | Dimensions (mm/in) | Filter Size RFA030 | |--------------------|--------------------| | h1 | 25,5 | | | 1.16 | | h2 | 62,5 | | 112 | 2.46 | | h3 | 169,5 | | 113 | 6.67 | | h4 | 239,5 | | 114 | 9.43 | | h5 | 32 | | 113 | 1.26 | | h6 | 210 | | 110 | 8.27 | | b1 | 89 | | ы | 3.50 | | b2 | 80 | | UZ | 3.15 | | d1 | 70 | | uı | 2.76 | | d2 | 44,5 | | uz | 1.75 | | d3 | 100 | | us | 3.94 | | d4 | 74 | | u4 | 2.91 | | 11 | 54 | | [11 | 2.16 | | G2 | M6 or | | G2 | 1/4 UNC | # Return Line Filter Housings / Complete Filters - Type RFA # Filter Elements - Type RE Bold types identify preferred material. Other materials on request. # **Return Line Filters - Type RFA** # **Visual Clogging Indicator** The gauge visually displays the degree of contamination of the element. The colored segments allow quick visual checking. green 0 ... 2,5 bar / 0 ... 36.25 PSI Element has service life left yellow 2,5 ... 3,0 bar / 36.25 ... 43.5 PSI Element is contaminated and should be changed red >3,0 bar / >43.5 PSI Bypass valve open, unfiltered oil passing to tank # Electrical Clogging Switch The switch is used where an electrical signal is needed to indicate when the element needs changing. The switch can turn on a light, or shut the machine down, or any further function controlled by an electric signal. The switching pressure is 2,5 bar / 36.25 PSI and this allows the element to be changed before the bypass setting of 3 bar / 43.5 PSI is reached. Maximum Voltage Switch Type 42 V (normally open) G42NO 42 V (normally closed) G42NC 110 V (two-way contact) G110 230 V (two-way contact) G230 # **Filter Bowl with Threaded Connection** Under some circumstances such as a tall reservoir or one with oil levels which vary greatly during operation, it is necessary to extend the filter bowl so that the returning oil returns beneath the surface and does not entrain air in the process. The optional bowl with a female thread allows an extension to be fitted quite simply. The one piece design also allows for inline applications. # **Leakage Oil Connection** Seal or case drain lines can be connected to the filter through either of the clogging indicator ports providing that the leakage oil can accept a pressure of 3 bar / 43.5 PSI. It ensures that no unfiltered oil can return to the reservoir. # **Filter Bowl with Threaded Connection and Diffuser** Diffusers mounted to the filter bowl minimise foaming and reduce noise of high return line flows. For further details on STAUFF Diffusers please refer to the "Hydraulic Accessories" section on page E46. Attention: Connection pipe not included in scope of delivery! | Size SRV | for Return Line | Dimensions (mm/in) | | | | |-------------|-----------------|--------------------|------|----------|------| | SIZE SKV | Filter Size | øD | L | Thread G | Hex | | SRV-114-B16 | RFA030 | 60 | 139 | G1 | 46 | | SRV-114-N16 | RFAU3U | 2.36 | 5.47 | 1 NPT | 1.81 | Dimensions in mm/in # **Return Line Filters • Type RFA Flow Characteristics** The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Consult STAUFF for details. # Return Line Filters • Type RFB #### **Product Description** STAUFF RFB Return Line Filters are designed as tank top filters. They are mounted directly on the tank top and if 100% of the system oil is filtered they provide the optimum removal of contaminant from the system. This provides the pump with clean oil thus reducing contaminant generated wear. Because of it's low weight and compact design, the STAUFF RFB Filters are ideally suited for mobile hydraulic applications. A high efficiency of contaminant removal is assured by using STAUFF RE Replacement Filter Elements. The high dirt-hold capacity of STAUFF Elements ensures a long service life and as a result reduced maintenance costs. #### **Technical Data** #### Construction ■ Tank Top flange mounting #### Materials • Filter head: Aluminium ■ Filter bowl & cap: Glass Fibre Reinforced Polyamide ■ Sealings: NBR (Buna-N®) FPM (Viton®) EPDM (Ethylene Propylene Diene Monomer Rubber) Other sealing materials on request ## **Port Connection** - BSPNPT - SAE 0-ring thread # **Operating Pressure** Max. 10 bar / 145 PSI # **Temperature Range** ■ -10°C ... +100°C / +14°F ... +212°F ## Filter Elements Specifications see page C88 # **Media Compatibility** • Mineral oils, other fluids on request # **Options and Accessories** #### Valve $\begin{tabular}{ll} \blacksquare & \begin{tabular}{ll} \be$ # **Clogging Indicators** - Visual clogging indicator 0 ... 4 bar / 0 ... 58 PSI coloured segments - Electrical clogging switch, setting 2,5 bar / 36.25 PSI Other clogging indicators available on request # **Return Line Filters • Type RFB** # Return Line Filters • Type RFB | Thread Connection G | Filter Size RFB | | | | | | |---------------------|-----------------|---|-----|---|-----|---| | ilread Connection G | 022 | | 046 | | 052 | | | BSP | 3/4 | 1 | 3/4 | 1 | 3/4 | 1 | | NPT | 3/4 | 1 | 3/4 | 1 | 3/4 | 1 | | SAE 0-ring Thread | 1-5/16–12 | | | | | | | Dimensions (mm/in) | Filter Size RFB | | | | | |--------------------|-----------------|-------|-------|--|--| | Dimensions (mm/in) | 022 | 046 | 052 | | | | h1 | 34 | 34 | 34 | | | | 11 | 1.34 | 1.34 | 1.34 | | | | | 46,5 | 46,5 | 46,5 | | | | 2 | 1.83 | 1.83 | 1.83 | | | | • | 80 | 80 | 80 | | | | 3 | 3.15 | 3.15 | 3.15 | | | | 4 | 205,5 | 285,5 | 351,5 | | | | 4 | 8.09 | 11.24 | 13.84 | | | | - | 23 | 23 | 23 | | | | 5 | .91 | .91 | .91 | | | | | 154 | 239 | 305 | | | | 6 | 6.26 | 9.41 | 12.01 | | | | | 32 | 32 | 32 | | | | | 1.26 | 1.26 | 1.26 | | | | d2 | 70 | 70 | 70 | | | | 4 | 2.76 | 2.76 | 2.76 | | | | ` | 84,5 | 84,5 | 84,5 | | | | 3 | 3.33 | 3.33 | 3.33 | | | | | 72 | 72 | 72 | | | | 1 | 2.84 | 2.84 | 2.84 | | | | | 70 | 70 | 70 | | | | 2 | 2.76 | 2.76 | 2.76 | | | | | 115,5 | 115,5 | 115,5 | | | | 3 | 4.55 | 4.55 | 4.55 | | | | | 138,5 | 138,5 | 138,5 | | | | 1 | 5.45 | 5.45 | 5.45 | | | | b5 | 43 | 43 | 43 | | | | | 1.69 | 1.69 | 1.69 | | | | ^ | 11 | 11 | 11 | | | | b6 | .43 | .43 | .43 | | | | b7 | 58 | 58 | 58 | | | | | 2.28 | 2.28 | 2.28 | | | # Return Line Filter Housings / Complete Filters - Type RFB 1 Type Return Line Filter RFB 2 Group Flow Size 75 I/min / 22 US GPM 022 165 I/min / 46 US GPM 046 185 I/min / 52 US GPM 052 Note: Exact flow will depend on filter element selected. Consult technical data on pages C90. ## 3 Filter Material | Material | Max.
Δp*collapse | Micron
ratings
available | Code | | |--------------------|---------------------|--------------------------------|------|--| | Without filter | | | | | | element | _ | - | | | | Inorg. glass fibre | 25 bar / 363 PSI | 3, 5, 10, 20 | G | | | Stainless fibre | 30 bar / 435 PSI | 3, 3, 10, 20 | Α | | | Filter paper | 10 bar / 145 PSI | 10, 20 | N | | | Stainless mesh | 30 bar / 435 PSI | 10, 25, 50,
100, 200 | S | | Note: *Collapse/burst resistance as per ISO 2941. Other materials on request. # 4 Micron Rating | 3 μm | 03 | |--|-----| | 5 μm | 05 | | 10 μm | 10 | | 20 μm | 20 | | 25 μm | 25 | | 50 μm | 50 | | 100 μm | 100 | | 200 μm | 200 | | Note: Other micron ratings on request. | | # 5 Sealing Material | ~ | · · · | | |---|---|---| | | NBR (Buna®) | В | | | FPM (Viton®) | ۷ | | | EPDM | E | | | Note: Other sealing materials on request. | | #### 6 Connection Style | 000 | | | | |---------|---------------------|-----------------------|-------| | 022 | 046 | 052 | Code | | 1 | | | В | | 3/4 | | | B1 | | 1 | | | N | | 3/4 | | | N1 | | 1-5/16- | -12 | | U | | | 1
3/4
1-5/16- | 1
3/4
1-5/16–12 | 1 3/4 | Note: Bold types identify preferred connection style. #### 7 Clogging Indicator | | Pos | ition* | Code | |-------------------------------------|-----|--------|-------------| | Without Clogging Indicator | - | | 0 | | Visual Clogging Indicator | | | M | | Electrical Clogging Switch 42 V, NO | | | G42N0 | | Electrical Clogging Switch 42 V, NC | | | G42NC | | Electrical Clogging Switch 110 V, | 1 | 2 | G110 | | two-way contact | | | uiio | | Electrical Clogging Switch 230 V, | | | 6330 | | two-way contact | | | U230 | Note: *Position of clogging indicator see page C89. Without any code: assembly in the middle of the filter cover. # 8 Outlet Style | Standard outlet (without thread) | 0 | |----------------------------------|---| | With thread G1 | G | | With thread 1 NPT | N | #### 9 Air Filter Element | Withour Air Filter Element | 0 | |--|---------| | Filter paper 10 micron | L10 | | Note: Other materials and micron ratings on re | equest. | # 10 Design Code Only for information X # Filter Elements • Type RE # **Air Filter Elements** # **Return Line Filters - Type RFB** # **Visual Clogging Indicator** The gauge visually displays the degree of contamination of the element. The colored segments allow quick visual checking. green 0 ... 2,5 bar / 0 ... 36.25 PSI Element has service life left yellow 2,5 ... 3,0 bar / 36.25 ... 43.5 PSI Element is contaminated and should be changed red > 3,0 bar / >43.5 PSI Bypass valve open, unfiltered oil passing to tank # # **Electrical Clogging Switch** The switch is used where an electrical signal is needed to indicate when the element needs changing. The switch can turn on a light, or shut the machine down, or any further function controlled by an
electric signal. The switching pressure is 2,5 bar / 36.25 PSI and this allows the element to be changed before the bypass setting of 3 bar / 43.5 PSI is reached. Maximum Voltage Switch Type 42 V (normally open) G42NO 42 V (normally closed) G42NC 110 V (two-way contact) G110 230 V (two-way contact) G230 Dimensions in mm / in ## Air Filter Element Allows an effective filtration of the incoming air which avoids the infiltration of dirt particles into the hydraulic system. The standard air filter element is a 10 micron cellulose; other materials and micron ratings on request. # **Filter Bowl with Threaded Connection** Under some circumstances such as a tall reservoir or one with oil levels which vary greatly during operation, it is necessary to extend the filter bowl so that the returning oil returns beneath the surface and does not entrain air in the process. The optional bowl with a female thread allows an extension to be fitted quite simply. **C89** # **Return Line Filters • Type RFB Flow Characteristics** The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Consult STAUFF for details. # **Return Line Filters - Type RFS** #### **Product Description** STAUFF RFS Carbon Steel Return Line Filters are designed as tank top or in-line filters. They are mounted directly on the tank top and if 100% of the system oil is filtered, they provide the optimum removal of contaminants from the system. This provides the pump with clean oil thus reducing contaminant generated wear. The filter bowl is designed with a connection, threaded or flanged, for extending the return oil beneath the surface thus preventing the entrainment of air. A high efficiency of contaminant removal is assured by using STAUFF RE Replacement Filter Elements. The high dirt-hold capacity of STAUFF Elements ensures a long service life and as a result reduced maintenance costs. #### **Technical Data** #### Construction • Tank Top mounting or in-line mounting #### Materials Filter Housing: Carbon SteelSealings: NBR (Buna-N®) FPM (Viton®) EPDM (Ethylene Propylene Diene Monomer Rubber) Other sealing materials on request #### **Port Connection** BSP ■ SAE flange 3000 PSI ## Flow Rating Up to 1135 I/min / 300 US GPM # **Operating Pressure** Max. 25 bar / 365 PSI # **Proof Pressure** Min. 37,5 bar / 545 PSI # Temperature Range ■ -10°C ... +100°C / +14°F ... +212°F #### Filter Elements Specifications see page C94 # **Media Compatibility** • Mineral oils, other fluids on request # **Options and Accessories** #### Valves \blacksquare Bypass valve Opening pressure 3 bar \pm 0,3 bar / 43.5 PSI \pm 4.35 PSI (integrated in the filter element) ## **Clogging Indicators** - Visual clogging indicator 0...4 bar / 0...58 PSI coloured segments - Electrical clogging switch, setting 2,5 bar / 36.25 PSI Other clogging indicators available on request # STAUFF ® # **Return Line Filters • Type RFS** # Return Line Filters • Type RFS | Thread Connect | ion | Filter Size RFS | | | | | |-------------------|------------|-----------------|-----|-----|-------|-----| | Tilleau Collilect | 1011 | 045 | 090 | 160 | 250 | 300 | | Inlot | BSP | 1-1/2 | 2 | - | - | - | | Inlet | SAE Flange | - | 2 | 3 | 3-1/2 | 4 | | Outlet G | BSP | 1-1/2 | 2 | 3 | - | - | | | SAE Flange | - | - | - | 3-1/2 | 4 | | Dimensione (mm/lim) | Filter Size RFS | | | | | | | |---------------------|-----------------|---------|---------|---------|---------|--|--| | Dimensions (mm/in) | 045 | 090 | 160 | 250 | 300 | | | | h1 | 120 | 150 | 196 | 255 | 255 | | | | b1 | 4.72 | 5.91 | 7.72 | 10.04 | 10.04 | | | | h0 | 95,5 | 120 | 155,5 | 205 | 205 | | | | b2 | 3.76 | 4.72 | 6.12 | 8.07 | 8.07 | | | | b3 | 66 | 85 | 110 | 135 | 145 | | | | D3 | 2.60 | 3.35 | 4.33 | 5.32 | 5.71 | | | | b4 | | 77,8 | 106,4 | 120,7 | 130,2 | | | | 04 | - | 3.06 | 4.19 | 4.75 | 5.13 | | | | b5 | | 42,9 | 61,9 | 69,5 | 77,8 | | | | ມວ | - | 1.69 | 2.44 | 2.74 | 3.06 | | | | 41 | 100 | 135 | 180 | 208 | 208 | | | | d1 | 3.94 | 5.32 | 7.09 | 8.19 | 8.19 | | | | d2 | 6,5 | 9 | 13,5 | 17,5 | 17,5 | | | | UZ | .26 | .35 | .53 | .69 | .69 | | | | 40 | | M12 | M16 | M16 | M16 | | | | d3 | - | 1/2-UNC | 5/8-UNC | 5/8 UNC | 5/8 UNC | | | | h1 | 120 | 138 | 243 | 251 | 332 | | | | 111 | 4.72 | 5.43 | 9.57 | 9.88 | 13.07 | | | | h2 | 88 | 131 | 167 | 198 | 241 | | | | 112 | 3.47 | 5.16 | 6.57 | 7.80 | 9.49 | | | | h3 | 43 | 63 | 84 | 93 | 121 | | | | 113 | 1.69 | 2.48 | 3.31 | 3.66 | 4.76 | | | | h4 | 13 | 13 | 13 | 13 | 13 | | | | 114 | .51 | .51 | .51 | .51 | .51 | | | | h5 | 7 | 12 | 12 | 12 | 12 | | | | III | .28 | .47 | .47 | .47 | .47 | | | | hC | 130 | 180 | 320 | 350 | 460 | | | | h6 | 5.11 | 7.09 | 12.60 | 13.78 | 18.11 | | | Filtration Technology # Return Line Filter Housings / Complete Filters - Type RFS # 1 Type Carbon Steel Return Line Filter RFS 2 Group Flow Size 170 I/min / 45 US GPM 045 340 I/min / 90 US GPM 090 600 I/min / 160 US GPM 160 945 I/min / 250 US GPM 250 1135 I/min / 300 US GPM 300 Note: Exact flow will depend on filter element selected. Consult technical data on pages C96 / C97. # 3 Filter Material | Material | Max.
Δp*collapse | Micron
ratings
available | Code | |------------------------|---------------------|--------------------------------|------| | Without filter element | - | = | | | Inorg. glass fibre | 25 bar / 363 PSI | 3, 5, 10, 20 | G | | Stainless fibre | 30 bar / 435 PSI | 3, 3, 10, 20 | Α | | Filter paper | 10 bar / 145 PSI | 10, 20 | N | | Stainless mesh | 30 bar / 435 PSI | 25, 50,
100, 200 | S | Note: *Collapse/burst resistance as per ISO 2941. Other materials on request. # 4 Micron Rating |) | wildroit hauling | | |---|--|-----| | | 3 μm | 03 | | | 5 μm | 05 | | | 10 μm | 10 | | | 20 μm | 20 | | | 25 μm | 25 | | | 50 μm | 50 | | | 100 μm | 100 | | | 200 μm | 200 | | | Note: Other micron ratings on request. | | | В | |---| | V | | E | | | | | # 6 Connection Style | Connection | Group | | | | | Code | |------------------------|-------|-----|-----|-------|-----|------| | Style | 045 | 090 | 160 | 250 | 300 | oouo | | BSP | 1-1/2 | 2 | - | - | - | G | | SAE Flange
3000 PSI | - | 2 | 3 | 3-1/2 | 4 | F | # 7 Clogging Indicator | | Posi | tion* | Code | |-------------------------------------|------|-------|-------| | Without Clogging Indicator | - | | 0 | | Visual Clogging Indicator | | | M | | Electrical Clogging Switch 42 V, NO | | | G42N0 | | Electrical Clogging Switch 42 V, NC | | | G42NC | | Electrical Clogging Switch 110 V, | 1 | 2 | G110 | | two-way contact | | | G110 | | Electrical Clogging Switch 230 V, | | | G230 | | two-way contact | | | u230 | Note: *Position of clogging indicator see page C95. Without any code: assembly in the middle of the filter cover | Connection | Grou | Group | | | | Thread | Code | |------------------------|-------|-------|-----|-------|-----|--------|------| | Style | 045 | 090 | 160 | 250 | 300 | Style | oodo | | BSP | 1-1/2 | 2 | 3 | - | - | - | G | | SAE Flange
3000 PSI | - | - | - | 3-1/2 | 4 | metric | FM | | SAE Flange
3000 PSI | - | - | - | 3-1/2 | 4 | UNC | FU | 9 Design Code Only for information X # Filter Elements - Type RE | Material | Max.
Δp*collapse | Micron
ratings
available | Code | |--------------------|---------------------|--------------------------------|------| | Inorg. glass fibre | 25 bar / 363 PSI | 3, 5, 10, 20 | G | | Stainless fibre | 30 bar / 435 PSI | 3, 3, 10, 20 | Α | | Filter paper | 10 bar / 145 PSI | 10, 20 | N | | Stainless mesh | 30 bar / 435 PSI | 25, 50,
100, 200 | S | Note: *Collapse/burst resistance as per ISO 2941. Other materials on request. | Micron Rating | | |--|--| | 3 μm | 03 | | 5 μm | 05 | | 10 μm | 10 | | 20 μm | 20 | | 25 μm | 25 | | 50 μm | 50 | | 100 μm | 100 | | 200 μm | 200 | | Note: Other micron ratings on request. | | | | 3 μm
5 μm
10 μm
20 μm
25 μm
50 μm
100 μm
200 μm | | | 5 Sealing Material | | |---|---|---| | | NBR (Buna®) | В | | | FPM (Viton®) | V | | 1 | EPDM | E | | | Note: Other sealing materials on request. | | | | 6 Design Code | | | 1 | Only for information | Х | | | | | | | | | # Return Line Filters • Type RFS # **Visual Clogging Indicator** The gauge visually displays the degree of contamination of the element. The colored segments allow quick visual checking. 0 ... 2,5 bar / 0 ... 36.25 PSI green yellow >3,0 bar / >43.5 PSI 2,5 ... 3,0 bar / 36.25 ... 43.5 PSI Element has service life left Element is contaminated and should be changed Bypass valve open, unfiltered oil passing to tank # **Electrical Clogging Switch** red The switch is used where an electrical signal is needed to indicate when the element needs changing. The switch can turn on a light, or shut the machine down, or any further function controlled by an electric signal. The switching pressure is 2,5 bar / 36.25 PSI and this allows the element to be changed before the bypass setting of 3 bar / 43.5 PSI is reached. Maximum Voltage Switch Type 42 V (normally open) G42N0 G42NC 42 V (normally closed) 110 V (two-way contact) G110 230 V (two-way contact) G230 Dimensions in mm / in # **Replacement Filter Elements RE Series** # **Product Description** STAUFF RE Replacement Filter Elements are manufactured in the common filter materials such as Stainless Fibre, Stainless Mesh, Cellulose and Inorganic Glass Fibre. As standard all Replacement Elements RE have tin plated steel parts for use with aggressive media such as water glycol, upon request you also can get other materials. All Replacement Elements made by STAUFF comply with
quality specifications in accordance with international standards. #### **Order Code** # Return Line Filters • Type RFS Flow Characteristics The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Consult STAUFF for details. # **Return Line Filters • Type RFS Flow Characteristics** The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Consult STAUFF for details. # **Return Line Filters • Type RIF300** # **Product Description** STAUFF RIF300 Return Line Filters are designed for in-line hydraulic applications with a maximum working pressure of 34,5 bar / 500 PSI. Used together with STAUFF Filter Elements, a high efficiency of contaminant removal is assured. # **Technical Data** #### Construction In-line assembly #### Materials Filter head: Aluminium Filter bowl: Steel Filter cover: Cast Iron Sealings: NBR (Buna-N®) FPM (Viton®) Other sealing materials on request #### **Port Connection** ■ SAE Code 61 flange #### Flow Rating ■ Up to 1135 I/min / 300 US GPM # **Operating Pressure** Max. 34,5 bar / 500 PSI # **Burst Pressure** • Min. 103 bar / 1500 PSI # Temperature Range ■ -10°C ... +100°C / +14°F ... +212°F # Filter Elements Specifications see page C101 # **Media Compatibility** • Mineral oils, other fluids on request # **Options and Accessories** #### Valve Bypass valve (integrated in the filter element) Opening pressure 3,4 *+0.35 bar / 50 *+5 PSI Allows unfiltered oil to bypass the contaminated element once the opening pressure has been reached Other settings available on request # **Clogging Indicators** - Visual clogging indicator 2,4 bar / 35 PSI - Visual-electrical clogging indicator 2,4 bar / 35 PSI Other clogging indicators available on request # **Return Line Filters • Type RIF300** Dimensions in mm / in | Dimensions (mm/in) | Filter Size RIF | |--------------------|-----------------| | Dimensions (mm/in) | 300 | | b1 | 220,4 | | В | 8.68 | | b2 | 101,6 | | UZ | 4 | | b3 | 50,8 | | | 2 | | b4 | 193 | | 04 | 7.60 | | b5 | 186,44 | | 50 | 7.34 | | b6 | 153,1 | | 50 | 6.03 | | b7 | 127 | | | 5 | | d1 | 184,1 | | | 7.25 | | h1 | 61,7 | | | 2.43 | | h2 | 38,1 | | | 1.50 | | 11 | 1204 | | | 47.40 | | 12 | 991 | | - | 39 | | Weight (kg/lbs) | 39,2 | | | 86.2 | # Return Line Filter Housings / Complete Filters - Type RIF300 # Filter Elements - Type SP # Return Line Filters • Type RIF300 # **Visual Clogging Indicator** Part number HIR-V is a clogging indicator actuated by the differential pressure across the filter element. The actuating pressure of 2,4 bar / 35 PSI allows the dirty element to be changed before the bypass setting of 3,4 bar / 50 PSI is reached. # **Visual/Electrical Clogging Indicator** Part number HIR-VE is used when an electrical signal is needed to indicate when the element needs changing. It is actuated by the differential pressure across the filter element. The actuating pressure of 2,4 bar / 35 PSI allows the dirty element to be changed before the bypass setting of 3,4 bar / 50 PSI is reached. # **HIR-VE Rated Capacity** 4 A inductive 7 A 28 V DC resistive 7 A 250 V AC Dimensions in mm / in # **Order Code** Note: The female plug (connector) is to be furnished by the customer. Installation: Lubricate both 0-rings supplied with the indicator. Install in the cavity and torque to 41 ... 47 Nm / 30 ..- ft-lbs. The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Consult STAUFF for details. # **Return Line Filters • Type RIF48** # **Product Description** STAUFF RIF48 series return filters are designed for in-line hydraulic applocations with a maximum opening pressure of 20 bar / 300 PSI. The RIF48 series in-line filter meets the HF4 Automotive Standard. #### **Technical Data** #### Construction ■ In-line assembly #### Materials • Filter head: Die Cast Aluminium ■ Element case: Stee ■ Sealings: NBR (Buna-N®), FPM (Viton®) # **Port Connections** BSP NPT SAE 0-ring thread ■ SAE code 61 flange ## Flow Rating Up to 380 l/min / 100 US GPM for 32 cSt / 150 SUS fluids, # **Operating Pressure** Max. 20 bar / 300 PSI #### **Burst Pressure** Min. 70 bar / 1000 PSI # Temperature Range ■ -29°C ... +107°C / -20°F ... +225°F # Filter Elements Specifications see page C106 # **Media Compatibility** • Mineral oils, other fluids on request # **Options and Accessories** #### Valve Bypass valve: Allows unfiltered oil to bypass the contaminated element once the opening pressure has been reached Bypass setting: 2,8 bar / 40 PSI # **Clogging Indicators** Standard actuating pressure: 2,4 bar / 35 PSI Available indicators: Visual, Electrical # **Return Line Filters - Type RIF48** Dimensions in mm / in www.stauff.com C105 # Return Line Filter Housing / Complete Filters - Type RIF48 # Filter Elements - Type RTE48 # **Return Line Filters • Type RIF48** # **Visual Clogging Indicator** Part number HI48-V is a mechanical magnetic cartridge with a highly visible red disk that pops up at 2,4 bar / 35 PSI. Once activated the red signal continues to indicate a bypass condition until it is manually reset. # **Electrical Clogging Indicator** Part number HI48 are used when a electrical signal is needed to indicate when the element needs changing. The solid state switch is activated at 2,4 bar / 35 PSI. The indicators are supplied with 305 mm / 12 in long 4 wire cable, and meet NEMA4 and IP65 specifications. # **Electrical Clogging Indicator - HI48-E Ratings** AC Rating DC Rating Voltage max 240 V AC max 100 V DC Wattage max 720 Watts max 50 Watts Current 0.10 to 6 amps 0.01 to 2 amps Contact type solid state solid state # **Order Code** Filtration Technology Dimensions in mm / in www.stauff.com C107 # Return Line Filters • Type RIF48 Flow Characteristics The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. Consult STAUFF for details. #### **Product Description** STAUFF RTF10/25 Return Line Filters are designed as tank top filters with a maximum operating pressure of 3,4 bar / 49 PSI. #### **Technical Data** #### Construction Tank Top flange mounting #### Materials • Filter head: Aluminum • Filter bowl: Polyamide Sealings: NBR (Buna-N®) FPM (Viton®) Other sealing materials on request #### **Port Connection** - BSP - NPT - SAE 0-ring thread #### Flow Rating ■ Up to 95 I/min / 25 US GPM #### **Operating Pressure** Max. 3,4 bar / 49 PSI #### **Burst Pressure** Min. 10 bar / 145 PSI #### **Temperature Range** - -25°C ... +95°C / -13°F ... +203°F #### **Filter Elements** • Specifications see page C112 #### **Media Compatibility** Mineral oils, other fluids on request #### **Options and Accessories** #### Valve Opening pressure 1,7 bar / 25 PSI Bypass valve: Other settings available on request (integrated in the filter element) #### **Clogging Indicators** · Visual clogging indicator, coloured segments Electrical clogging switch, adjustable Other clogging indicators available on request | Thread Connection G | Filter Size RTF | | | | |---------------------|-----------------|-----------|-----------|--| | | 10S1 | 25S1 | 25S2 | | | BSP | 1/2 | 1 | 1 | | | NPT | 1/2 | 1 | 1 | | | SAE 0-ring | - | 1-5/16–12 | 1-5/16–12 | | | Dimensions (mm lim) | Filter Size RTF | Filter Size RTF | | | | | |---------------------|-----------------|-----------------|-------|--|--|--| | Dimensions (mm/in) | 10\$1 | 25\$1 | 25\$2 | | | | | h1 | 26 | 34 | 34 | | | | | "" | 1.02 | 1.34 | 1.34 | | | | | h2 | 21 | 29 | 29 | | | | | IIZ | .83 | 1.14 | 1.14 | | | | | h3 | 88 | 103 | 151 | | | | | lio | 3.46 | 4.05 | 5.95 | | | | | h4 | 136 | 166 | 212 | | | | | 114 | 5.35 | 6.53 | 8.35 | | | | | h5 | 8 | 10 | 10 | | | | | lio | .32 | .39 | .39 | | | | | h6 | 110 | 130 | 175 | | | | | 110 | 4.33 | 5.12 | 6.89 | | | | | b1 | 50 | 67 | 67 | | | | | DI | 1.97 | 2.64 | 2.64 | | | | | b2 | 90 | 115 | 115 | | | | | UZ | 3.54 | 4.52 | 4.52 | | | | | d1 | 66 | 86 | 86 | | | | | ui | 2.60 | 3.39 | 3.39 | | | | | d2 | 24 | 28 | 28 | | | | | uz | .94 | 1.10 | 1.10 | | | | | d3 | 7 | 9 | 9 | | | | | uo | .28 | .35 | .35 | | | | | Woight (kg/lha) | 0,45 | 0,9 | 1 | | | | | Weight (kg/lbs) | 1 | 2 | 2.2 | | | | #### Return Line Filter Housings / Complete Filters - Type RTF10/25 #### Filter Elements - Type RTE ## **Product Description** STAUFF RTF20 Return Line Filters are designed as tank top filters with a maximum operating pressure of 10 bar / 145 PSI and flow rates up to 115 I/min / 30 US GPM. The filter bowl is designed to return the oil beneath the surface thus preventing entrainment of air. RTF20 series compact design and integral breather make them ideal for mobile hydraulic applications. #### **Technical Data** #### Construction Tank Top flange mounting #### Materials Filter head: Aluminum Filter bowl & cap: Polyamide Sealings: NBR (Buna-N®) FPM (Viton®) Other sealing materials on request #### **Port Connection** BSP NPT SAE 0-ring thread #### Flow Rating ■ Up to 115 I/min / 30 US GPM #### **Operating Pressure** Max. 10 bar / 145 PSI #### **Burst Pressure** Min. 30 bar / 435 PSI ####
Temperature Range - -25°C ...+95°C / -13°F ... +203°F #### **Integrated Breather** - Filter paper 10 μm - Filter paper 40 μm #### Filter Elements Specifications see page C116 #### **Media Compatibility** • Mineral oils, other fluids on request #### **Options and Accessories** #### Valve Bypass valve: Opening pressure 1,7 bar / 25 PSI (integrated in the filter element) Other settings available on request #### **Clogging Indicators** Visual clogging indicator, coloured segments Electrical clogging switch, adjustable Other clogging indicators available on request www.stauff.com C113 # STAUFF® # Return Line Filters • Type RTF20 | Thread Connection G1 | Filter Size RTF | | |----------------------|-----------------|--------| | | 020 | | | BSP | 1/2 | 3/4 | | NPT | 1/2 | 3/4 | | SAE Thread | 3/4–16 | 1–1/16 | | | Filter Size RTF | |--------------------|-----------------------| | Dimensions (mm/in) | 020 | | | 50 | | b1 | 1.97 | | | 70 | | b2 | 2.76 | | | 82 | | b3 | 3.23 | | | 88 | | b4 | 3.46 | | LF. | 11 | | b5 | 43 | | d1 | 28 | | ui | 1.10 | | d2* | Min. 60 / Max. 63 | | uz | Min. 2.36 / Max. 2.48 | | d3 | 77 | | uo | 3.03 | | d4 | 75 | | u+ | 2.95 | | d5 | 48 | | uo | 1.89 | | h1 | 24 | | 111 | .94 | | h2 | 37,5 | | IIL | 1.48 | | h3 | 178 | | 110 | 7.01 | | h4 | 202 | | | 7.95 | | h5 | 16 | | | .63 | | h6 | 2 | | | .07 | | h7 | 210 | | | 8.27 | | G2 | G1/8 or | | - | 1/8 NPT | $[\]ensuremath{^{\star}}$ recommended diameter for mounting hole #### Return Line Filter Housings / Complete Filters • Type RTF20 #### Filter Elements - Type RTE #### Air Filter Elements - Type RTEA ## **Product Description** STAUFF RTF40 Return Line Filters are designed as tank top filters with a maximum operating pressure of 6,9 bar / 100 PSI. The filter bowl is designed to return the oil beneath the surface thus preventing entrainment of air. #### **Technical Data** #### Construction Tank Top flange mounting #### Materials • Filter head: Aluminum • Filter bowl: Bowl length 1: Polyamide Bowl length 2: Steel ■ Sealings: NBR (Buna-N®) Other sealing materials on request #### **Port Connection** - BSPNPT - SAE 0-ring thread - SAE flange #### Flow Rating Up to 378 I/min / 100 US GPM #### **Operating Pressure** Max. 6,9 bar / 100 PSI #### **Temperature Range** ■ -25°C ...+95°C / -13°F ... +203°F #### Filter Elements RTE-47 with integrated bypass valve, single stack length RTE-48 bypass valve integrated in the filter head, equivalent to the HF-4 elements, single and double stack lengths RTE-49 bypass valve integrated in the filter head, single and double stack lengths Specifications see page C120 #### **Media Compatibility** • Mineral oils, other fluids on request #### **Options and Accessories** #### Valve Bypass valve: Opening pressures 1 bar / 14.5 PSI ±10 % or 1,7 bar / 25 PSI ±10 % RTF47: Bypass intergrated in the filter element RTF48/49: Bypass integrated in the filter head #### **Clogging Indicators** - Visual clogging indicator, coloured segments - Electrical clogging switch, adjustable Other clogging indicators available on request ## Filter Elements • Types RTE47 / RTE48 / RTE49 #### RTF40 Series Weld Ring WR-40 The WR-40 weld ring is welded directly to the hydraulic reservoir, eliminating the need for drilling and tapping mounting holes in the reservoir. Material: Carbon Steel | Thread Connection | Filter Size RTF | Filter Size RTF | | | | | |----------------------------|----------------------------|-----------------|----------------------------|----------|--|--| | Combinations | 4S1 | | 4S2 | | | | | | Port A | Port B | Port A | Port B | | | | BSP (B) | 1-1/4 and 1-1/2 SAE Flange | None | 1-1/4 and 1-1/2 SAE Flange | None | | | | BSP (BB) | 1-1/4 and 1-1/2 SAE Flange | 1-1/4 | 1-1/4 and 1-1/2 SAE Flange | 1-1/4 | | | | NPT (N) | 1-1/4 and 1-1/2 SAE Flange | None | 1-1/4 and 1-1/2 SAE Flange | None | | | | NPT (NN) | 1-1/4 and 1-1/2 SAE Flange | 1-1/4 | 1-1/4 and 1-1/2 SAE Flange | 1-1/4 | | | | NPT (M) | 1-1/2 | None | 1-1/2 | None | | | | NPT (MN) | 1-1/2 | 1-1/4 | 1-1/2 | 1-1/4 | | | | NPT (MM) | 1-1/2 | 1-1/2 | 1-1/2 | 1-1/2 | | | | SAE (S) | 1-5/8-12 | None | 1-5/8–12 | None | | | | SAE (SS) | 1-5/8-12 | 1-5/8-12 | 1-5/8-12 | 1-5/8-12 | | | | SAE (ST) | 1-5/8-12 | 1-7/8-12 | 1-5/8-12 | 1-7/8-12 | | | | SAE (SU) | 1-5/8-12 | 2-1/2-12 | 1-5/8-12 | 2-1/2-12 | | | | SAE (TT) | 1-7/8-12 | 1-7/8-12 | 1-7/8-12 | 1-7/8-12 | | | | Combination SAE & NPT (SO) | 1-5/8-12 | 2 | 1-5/8-12 | 2 | | | | Dimensions (mm/in) | Filter Size RTF | | | |--------------------|-----------------|-----------|--| | Dimensions (mm/in) | 4S1 | 4S2 | | | h1 | 50 | 50 | | | 111 | 1.97 | 1.97 | | | h2 | 112 | 112 | | | 112 | 4.41 | 4.41 | | | h3 | 263 | 475 | | | 113 | 10.35 | 18.70 | | | h4 | 385 | 587 | | | 114 | 15.16 | 23.11 | | | h5 | 21 | 38 | | | 110 | .83 | 1.50 | | | h6 | 11 | 11 | | | 110 | .43 | .43 | | | b1 | 170 | 170 | | | NI | 6.70 | 6.70 | | | b2 | 152 | 152 | | | UZ | 5.98 | 5.98 | | | b3 | 69.9 | 69.9 | | | ມວ | 2.75 | 2.75 | | | b4 | 35,6 | 35,6 | | | 04 | 1.40 | 1.40 | | | b5 | 112 | 112 | | | טט | 4.41 | 4.41 | | | d1 | 122 | 126 | | | ui | 4.80 | 4.96 | | | d2 | M12 or | M12 or | | | uz | 1/2-13 UN | 1/2–13 UN | | | d3 | 38,1 | 38,1 | | | us | 1.50 | 1.50 | | | d4 | 11 | 11 | | | u4 | .43 | .43 | | | G | G1-1/2 or | G1-1/2 or | | | u | 1-1/2 NPT | 1-1/2 NPT | | Dimensions in mm / in www.stauff.com C119 #### Return Line Filter Housings / Complete Filters - Type RTF40 #### Filter Elements - Type RTE #### **Product Description** STAUFF RTF50 Return Line Filters are designed for tank top applications with a maximum pressure of 6,9 bar / 100 PSI. The filter bowl is designed to return the oil beneath the surface thus preventing entrainment of air. The RTF58 elements interchange with the popular "K" series and RTF59 elements interchange with the "RE-409" series elements. #### **Technical Data** #### Construction Tank Top flange mounting #### Materials Filter head: Aluminum Filter bowl: Bowl length 1: Polyamide Bowl length 2: Steel Sealings: NBR (Buna-N®) Other sealing materials on request #### **Port Connection** - BSP - NPT - SAE 0-ring thread #### Flow Rating Up to 379 I/min / 100 US GPM #### **Operating Pressure** Max. 6,9 bar / 100 PSI #### **Temperature Range** ■ -25°C ...+95°C / -13°F ... +203°F #### **Filter Elements** • Specifications see page C124 #### **Media Compatibility** • Mineral oils, other fluids on request #### **Options and Accessories** #### Valve Opening pressures 1 bar / 14.5 PSI ± 10 % or 1,7 bar / Bypass valve: 25 PSI ± 10 % Other settings available on request #### **Clogging Indicators** · Visual clogging indicator, coloured segments • Electrical clogging switch, adjustable Other clogging indicators available on request # Return Line Filters • Type RTF Accessories #### RTF50 Series Weld Ring WR-40 The WR-40 weld ring is welded directly to the hydraulic reservoir, eliminating the need for drilling and tapping mounting holes in the reservoir. Material: Carbon Steel | Thread Connection | Filter Size RTF | | | | | |----------------------------|-----------------|----------|----------|----------|--| | Combinations | 5S1 | | 5S2 | | | | | Port A | Port B | Port A | Port B | | | NPT (N) | 1-1/4 | None | 1-1/4 | None | | | NPT (NM) | 1-1/4 | 1-1/2 | 1-1/4 | 1-1/2 | | | NPT (M) | None | 1-1/2 | None | 1-1/2 | | | Combination SAE & NPT (SM) | 1-5/8-12 | 1-1/2 | 1-5/8–12 | 1-1/2 | | | SAE (S) | 1-5/8-12 | None | 1-5/8–12 | None | | | SAE (T) | None | 1-7/8–12 | None | 1-7/8-12 | | | SAE (ST) | 1-5/8-12 | 1-7/8–12 | 1-5/8–12 | 1-7/8-12 | | | Combination NPT & SAE (NT) | 1-1/4 | 1-7/8–12 | 1-1/4 | 1-7/8-12 | | | Dimensions (mm/in) | Filter Size RTF | | | |----------------------|-----------------|-----------|--| | Difficusions (min/m) | 5S1 | 5S2 | | | h1 | 49,3 | 42,3 | | | "" | 1.94 | 1.67 | | | h2 | 95,5 | 88,5 | | | 112 | 3.78 | 3.48 | | | h3 | 241,3 | 485,9 | | | 113 | 9.50 | 19.13 | | | h4 | 336,8 | 574,9 | | | 114 | 13.26 | 22.61 | | | h5 | 29,5 | 38,1 | | | lio | 1.16 | 1.50 | | | b1 | 177,8 | 177,8 | | | DI | 7.00 | 7.00 | | | d1 | 124,8 | 126 | | | ui ui | 4.91 | 4.96 | | | d2 | 158,7 | 158,7 | | | uz | 6.25 | 6.25 | | | d3 | 11,2 | 11,2 | | | us | .44 | .44 | | | G | 1-1/2 NPT | 1-1/2 NPT | | #### Return Line Filter Housings / Complete Filters • Type RTF50 #### Filter Elements - Type RTE #### **Product Description** STAUFF RTF-N Return Line Insert Filters allow for a choice of installation configurations which permits custom reservoir design with an in tank filtering system. The filters are installed semi-immersed or totally immersed into a reservoir. The filtration flow is from inside to the outside of the element which ensures that all the contaminant is collected inside the element itself avoiding contact with the reservoir fluid during element change. The combination of magnetic pre-filtration and high filtration efficiency results in a cost effective and versatile filtration system. #### **Technical Data** #### Construction Insert filter #### Materials Flange plate: Aluminum Magnet rod: Steel Bypass: Steel Diffuser: Steel Sealings: NBR (Buna-N®) FPM (Viton®) Other sealing materials on request #### Flow Rating ■ Up to 500 I/min / 132 US GPM #### **Operating Pressure** Max. 10 bar / 145 PSI #### **Temperature Range** - -29°C ...+107°C / -20°F ... +225°F #### **Filter Elements** Specifications see page C128 #### **Media Compatibility** • Mineral oils, other fluids on request #### **Options and Accessories** #### Valve Bypass valve: (integrated in the filter element) Opening pressure 1,5 bar / 22 PSI Other settings available on request | Dimensions (mm/in) | Filter Size RTF-N | | |----------------------|-------------------|-------| | Difficustons (min/m) | 390 | 500 | | h1 | 445 | 635 | | "" | 17.52 | 25.00 | | ko. | 290 | 478 | | h2 | 11.42 | 18.82 | | h3 | 421 | 609 | | lio lio | 16.57 | 23.98 | | h4 | 5 | 5 | | 114 | .20 | .20 | | hE. | 18 | 18 | | h5 | .71 | .71 | | h6 | 2,5 | 2,5 | | 110 | .10 | .10 | | h7 |
100 | 100 | | 117 | 3.94 | 3.94 | | h8 | 110 | 110 | | 110 | 4.33 | 4.33 | | d1 | 185 | 185 | | ui | 7.28 | 7.28 | | d2 | 150 | 150 | | uz | 5.91 | 5.91 | | d3 | 25 | 25 | | us | .98 | .98 | | d4 | 126 | 126 | | u÷ | 4.95 | 4.95 | | d5 | 165 | 165 | | us | 6.50 | 6.50 | | d6 | 151 | 151 | | uo | 5.94 | 5.94 | | d7 | 149 | 149 | | ur | 5.87 | 5.87 | | d8 | 139 | 139 | | uo | 5.47 | 5.47 | | d9 | 178 | 178 | | us | 7.01 | 7.01 | Filtration Technology #### Return Line Filter Housings / Complete Filters - Type RTF-N #### Filter Elements - Type RA # **Return Line Filters • Type RTF Flow Characteristics** The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Consult STAUFF for details. **Filter Elements** 52.5 **RA-390E** E05 E10 E20 400 Q in I/min 105 Q in US GPM #### Return Line Filters • Type RTF Flow Characteristics The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Consult STAUFF for details. Note: Element pressure drop curves are for "S1" single elements. For "S2" double elements use 50% of the "S1" Value. #### **RTF Filter Indicators** #### **Visual Indicators** | Visua | Visual Pressure Clogging Indicators | | | | | | | |-------|-------------------------------------|------------------------|---------------|----------------|------------------------|----------------|---------| | | Туре | Thread
Connection G | Unit of scale | Range of scale | Coloured Segm
Green | ents
Yellow | Red | | | SIM-02 | 1/8 | bar | 0 2,5 | 0 1,2 | 1,2 1,5 | 1,5 2,5 | | BSP | SIM-04 | 1/8 | bar | 0 4 | 0 2,5 | 2,5 3 | 3 4 | | | SIM-12 | 1/8 | bar | 0 12 | without coloured | l segments | | | NPT | CI-12 | 1/8 | PSI | 0 100 | 0 13 | 13 15 | 15 100 | | INPI | CI-20 | 1/8 | PSI | 0 100 | 0 21 | 21 25 | 25 100 | #### **Electrical Indicators** | Electri | Electrical Clogging Indicators | | | | | |---------|--------------------------------|------------------------|---------------|---------------------------------------|--------------------| | | Туре | Thread
Connection G | Unit of scale | Adjustable range / Actuating pressure | Max. over pressure | | | SIE-NO | 1/8 | bar | 1,3 (normally open) | 80 bar / 1160 PSI | | BSP | SIE-NC | 1/8 | bar | 1,3 (normally closed) | 80 bar / 1160 PSI | | | EPS-1B | 1/8 | bar | 0,35 2,5 | 25 bar / 362 PSI | | NPT | EPS-1 | 1/8 | PSI | 5 35 | 24 bar / 350 PSI | #### **Technical Data SIE / EPS** | | T FD0 / / / D | | |---|---|--| | | Type EPS-1 / 1B | | | Electrical data | 6 Amp 125/250 V AC | | | Protection | DIN 43650 IP65 | | | Temperature Range | -5°C +90°C / +23°F +194°F (ambient and media) | | | Diaphragm Material | NBR | | | Housing Material | Brass | | | Adjustable Range | 0,35 bar 2,0 bar / 5 30 PSI | | | Dead Band | 20% F.S. | | | Weight | 0,1 kg / .22 lbs | | | Repeatability ± 2 % | | | | Hirschmann Connector With Strain Relief | | | | | | | | | Type SIE (electrical switch) | |---------------------------|---| | Electrical data | 48V | | Protection | DIN 43650 IP54 | | Temperature Range | -5°C +60°C / +23°F +140°F (ambient and media) | | Diaphragm Material | NBR | | Housing Material | Brass | | Actuating Pressure | 1,3 bar / 19 PSI | | Max. current (res.) | 0,5 A | | Max. current (ind.) | 0,2 A | | Available as "normally or | pen" (closes contact at actuating pressure) and as "normally closed" (opens | # schmann Connector With Strain Relief contact at actuating pressure) #### **Dimensions** #### Type SIM ## Type SIE #### **Type EPS** Dimensions in mm/in Filtration Technology #### Spin-On Filters • Introduction #### **Product Description** STAUFF provides a complete range of Spin-On filters which can be used either as suction filters or as return line filters for low pressure applications. The various ranges meet international standards. The corresponding STAUFF Filter Elements are available from stock. #### **Technical Data** #### Material Filter head: AluminiumSealings: NBR (Buna-N®) #### **Port Connection** - BSP - NPT - SAE Flange - SAE 0-ring thread Other port connections on request #### **Operating Pressure** Up to 14 bar / 200 PSI #### **Nominal Flow Rate** ■ Up to 460 I/min / 120 US GPM #### **Options and Accessories** #### **Clogging Indicators** - Visual clogging indicator with coloured segments - Electrical clogging switch Other types available on request #### **Private Labelling** • On request, the filter elements can be printed with a private label #### **Private Labeling** ## Spin-On Filters • Quick Reference Guide **Type A**Spin-On Filter with seal contour A for filter elements with inner seal | Spin-On | Spin-On Filter Heads | | | | | | Spin-On Filter Elements (see page) | | | | | | | | | |---------|----------------------|-------------------------------|----------------------|--------|-----------|-----------------|------------------------------------|--------|------|------|------|------------------|------------------|--------------------|---------| | Series | Size | Port | Spigot | Max. F | low Rate* | Catalog
Page | Seal Co | | SF63 | SF65 | SF67 | SFC-35
SFC-36 | SFC-57
SFC-58 | SFCT-35
SFCT-36 | SFCT-58 | | SLF | 02 | 1/4 NPT | 3/4-16 UNF | 19 | 5 | C134 | Х | .,,,,, | C146 | | | 0.00 | 0.00 | 0.0.0 | 0.0.0 | | SLF | 03 | 3/8 NPT | 3/4-16 UNF | 19 | 5 | C134 | Χ | | C146 | | | | | | | | SLF | 04 | 9/16-18 UN | 3/4-16 UNF | 26 | 7 | C134 | Х | | C146 | | | | | | | | SAF | 05 | 1/2 NPT | 1–12 UNF | 57 | 15 | C135 | Х | | | C147 | | | | | | | SAF | 06 | 3/4-16 UN | 1–12 UNF | 57 | 15 | C135 | Х | | | C147 | | | | | | | SAF | 07 | 3/4 NPT | 1–12 UNF | 90 | 25 | C135 | Х | | | C147 | | | | | | | SAF | 11 | 1-1/16-12 UN | 1–12 UNF | 90 | 25 | C135 | Х | | | C147 | | | | | | | SAF | 10 | 1 NPT | 1–12 UNF | 128 | 34 | C136 | Х | | | C147 | | | | | | | SAF | 13 | 1-5/16-12 UN | 1–12 UNF | 128 | 34 | C136 | Χ | | | C147 | | | | | | | SSF | 12/12N | G3/4 | G3/4 | 90 | 25 | C137 | Х | | | | | C144 | | | | | SSF | 100 | 1 NPT | G1-1/4 + 1-1/2-16 UN | 170 | 45 | C138 | Х | Х | | | C148 | | C145 | | | | SSF | 120L | 1-1/4 NPT | G1-1/4 + 1-1/2-16 UN | 225 | 60 | C138 | Х | Х | | | C148 | | C145 | | | | SSF | 120 | 1-1/4 NPT | G1-1/4 + 1-1/2-16 UN | 225 | 60 | C138 | Χ | Х | | | C148 | | C145 | | | | SSF | 130 | 1-5/16-12 UN | G1-1/4 + 1-1/2-16 UN | 225 | 60 | C138 | Χ | Х | | | C148 | | C145 | | | | SSF | 160 | 1-5/8-12 UN | G1-1/4 + 1-1/2-16 UN | 225 | 60 | C138 | Х | Х | | | C148 | | C145 | | | | SSF | 150 | 1-1/2 NPT | 1-1/2-16 UN | 300 | 80 | C139 | | Х | | T | C148 | | T | | Т | | SSF | 180 | 1-7/8-12 UN | 1-1/2-16 UN | 300 | 80 | C139 | | Х | | | C148 | | | | | | SSF | 24N | 1-1/2 NPT | G1-1/4 + 1-1/2-16 UN | 454 | 120 | C140 | Х | х | | | C148 | | C145 | Τ | | | SSF | 24S | 1-7/8-12 UN | G1-1/4 + 1-1/2-16 UN | 454 | 120 | C140 | Х | Х | | | C148 | | C145 | | | | SSF | 25 | 1-1/2 NPT and
2 SAE Flange | G1-1/4 + 1-1/2–16 UN | 454 | 120 | C141 | х | х | | | C148 | | C145 | | | | SSFT | 12 | 3/4 NPT | G3/4 | 75 | 20 | C142 | Х | Х | | | | | | C144 | | | SSFT | 20 | 1-1/2 NPT | G1-1/4 + 1-1/2-16 UN | 200 | 53 | C143 | X | | | | | | | | C145 | # STAUFF #### Spin-On Filter Heads - SLF-02 / 03 / 04 #### **Technical Data** #### Construction ■ In-line Spin-On filter head #### Material Aluminium #### **Port Connection** - NPT - SAE 0-ring thread #### Flow Rate - 26 I/min / 7 US GPM for return line application - 7 I/min / 2 US GPM for suction line application #### **Operating Pressure** - Max. 14 bar / 200 PSI - Max. 5,5 bar / 80 PSI differential pressure (for any application with no bypass valve) #### **Temperature Range** -32°C ... +100°C / -25°F ... +212°F #### **Media Compatibility** • Mineral oils, other fluids on request #### **Options and Accessories** #### Filter Elements For use with SF63 series elements For element types with seal contour type A For element types and flow characteristics see page C146 The element is not part of the scope of delivery #### **Clogging Indicators** - Visual clogging indicator with coloured segments - Electrical clogging switch 0,35 ... 2,5 bar / 5 ... 35 PSI adjustable For clogging indicator types see page C152 #### **Dimensions** Dimensions in mm / in #### Order Code #### Spin-On Filter Heads = SAF-05 / 06 / 07 / 11 #### **Dimensions** Element length L 147 L1 SF65 short elements 5.76 204 L2 SF65 long elements #### **Technical Data** #### Construction In-line Spin-On filter head #### Material Aluminium #### **Port Connection** - NPT - SAE 0-ring thread - 90 l/min / 25 US GPM for return line application - 23 l/min / 6 US GPM for suction line application #### **Operating Pressure** - Max. 14 bar / 200 PSI - Max. 5,5 bar / 80 PSI differential pressure (for any application with no bypass valve) #### **Temperature Range** ■ -32°C ... +100°C / -25°F ... +212°F #### **Media Compatibility** Dimensions in mm / in . Mineral oils, other fluids on request #### **Options and Accessories** #### **Filter Elements** • For use with SF65 series elements For element types with seal contour type A For element types and flow characteristics see page C147 The element is not part of the scope of delivery #### Valve Bypass valve (integrated in the head): Optional #### **Clogging Indicators** - Visual clogging indicator with coloured segments - Electrical clogging switch 0,35 ... 2,5 bar / 5 ... 35 PSI adjustable For clogging
indicator types see page C152 #### Order Code SAF #### 1 Type Spin-On Filter Head Clearance for element removal: 19 / .75 Clogging Indicator Ports: 1/8 NPT Pos. 1 for return line application Pos. 2 for suction line application # 2 Connection Style | Connection | Thread | Code | |------------|-----------|------| | NPT | 1/2 | 05 | | SAE | 3/4-16 | 06 | | NPT | 3/4 | 07 | | SAE | 1-1/16-12 | 11 | | SAE | 1-1/10-12 | | #### 3 Bypass Options | 31 | | |------------------|----| | No bypass | 00 | | 0,2 bar / 3 PSI | 03 | | 0,35 bar / 5 PSI | 05 | | 1 bar / 15 PSI | 15 | | 1,7 bar / 25 PSI | 25 | | | | #### 4 Clogging Indicator Port Options | No clogging indicator port | U | |--|---| | Clogging indicator port drilled for return line application | 1 | | Clogging indicator port drilled for suction line application | 2 | | All clogging indicator ports drilled | 4 | | Special | 9 | | | | # STAUFF #### Spin-On Filter Heads • SAF-10 / 13 #### **Technical Data** #### Construction ■ In-line Spin-On filter head #### Material Aluminium #### **Port Connection** - NPT - SAE 0-ring thread #### Flow Rate - 128 I/min / 34 US GPM for return line application - 30 I/min / 8 US GPM for suction line application #### **Operating Pressure** - Max. 14 bar / 200 PSI - Max. 5,5 bar / 80 PSI differential pressure (for any application with no bypass valve) #### Temperature Range -32°C ... +100°C / -25°F ... +212°F #### **Media Compatibility** • Mineral oils, other fluids on request #### **Options and Accessories** #### Filter Elements For use with SF65 series elements For element types with seal contour type A For element types and flow characteristics see page C147 The element is not part of the scope of delivery #### Valve Bypass valve (integrated in the filter head): Optional #### **Clogging Indicators** - Visual clogging indicator with coloured segments - Electrical clogging switch 0,35 ... 2,5 bar / 5 ... 35 PSI adjustable For clogging indicator types see page C152 #### **Dimensions** Dimensions in mm / in #### Order Code 1 Type #### 4 Clogging Indicator Port Options | No clogging indicator port | 0 | |--|---| | Clogging indicator port drilled for return line application | 1 | | Clogging indicator port drilled for suction line application | 2 | | All clogging indicator ports drilled | 4 | | Special | 9 | #### **Dimensions** SSF - 12 - 25 - 4 Dimensions in mm / in #### Spin-On Filter Heads - SSF-12 / 12N #### **Technical Data** #### Construction ■ In-line Spin-On filter head #### Material Aluminium #### Port Connection ■ BSP #### Flow Rate - 90 I/min / 25 US GPM for return line application - 23 I/min / 6 US GPM for suction line application #### **Operating Pressure** - Max. 12 bar / 174 PSI - Max. 4 bar / 58 PSI differential pressure (for any application with no bypass valve) #### **Temperature Range** ■ -32°C ... +100°C / -25°F ... +212°F #### **Media Compatibility** · Mineral oils, other fluids on request #### **Options and Accessories** #### Filter Elements For use with SFC-35/36 series elements For element types with seal contour type A For element types and flow characteristics see page C144 The element is not part of the scope of delivery #### Valve Bypass valve (integrated in the filter head): Optional #### **Clogging Indicators** - Visual clogging indicator with coloured segments - Electrical clogging switch 1,3 bar / 19 PSI adjustable For clogging indicator types see page C152 #### Order Code #### 4 Clogging Indicator Port Options | orogging mandator i ort options | | |--------------------------------------|---| | All clogging indicator ports drilled | 4 | | Special | 9 | | | | #### Spin-On Filter Heads • SSF-100 / 120 / 120L / 130 / 160 #### **Technical Data** #### Construction In-line Spin-On filter head #### Material Aluminium #### **Port Connection** - NPT - SAE 0-ring thread #### Flow Rate - 225 I/min / 60 US GPM for return line application - 46 l/min / 12 US GPM for suction line application #### **Operating Pressure** - Max. 14 bar / 200 PSI - Max. 5,5 bar / 80 PSI differential pressure (for any application with no bypass valve) #### **Temperature Range** -32°C ... +100°C / -25°F ... +212°F #### **Media Compatibility** . Mineral oils, other fluids on request #### **Options and Accessories** #### **Filter Elements** • For use with SF67 and SFC-57/58 series elements For element types with seal contour type A and B For element types and flow characteristics see page C148 for SF67 and page C149 for SFC-57/58. The element is not part of the scope of delivery #### Valve Bypass valve (integrated in the filter head): Optional #### **Clogging Indicators** - Visual clogging indicator with coloured segments - Electrical clogging switch 0,35 ... 2,5 bar / 5 ... 35 PSI adjustable For clogging indicator types see page C152 #### **Dimensions** Dimensions in mm / in #### Order Code 1 Type Spin-On Filter Head SSF #### 2 Connection Style | Connection | Thread | Code | |------------|-----------|------| | NPT | 1 | 100 | | NPT | 1-1/4 | 120L | | NPT | 1-1/2 | 120 | | SAE | 1-5/16-12 | 130 | | SAE | 1-5/8-12 | 160 | #### 3 Bypass Options | -) | | |------------------|----| | No bypass | 00 | | 0,2 bar / 3 PSI | 03 | | 0,35 bar / 5 PSI | 05 | | 1 bar / 15 PSI | 15 | | 1,7 bar / 25 PSI | 25 | | | | #### 4 Clogging Indicator Port Options | No clogging indicator port | U | |--|---| | Clogging indicator port drilled for return line application | 1 | | Clogging indicator port drilled for suction line application | 2 | | All clogging indicator ports drilled | 4 | | Special | 9 | | | | #### **Dimensions** Dimensions in mm / in #### Spin-On Filter Heads - SSF-150 / 180 #### **Technical Data** #### Construction In-line Spin-On filter head #### Material Aluminium #### **Port Connection** - NPT - SAE 0-ring thread #### Flow Rate - 300 l/min / 80 US GPM for return line application - 113 I/min / 30 US GPM for suction line application #### **Operating Pressure** - Max. 14 bar / 200 PSI - Max. 5,5 bar / 80 PSI differential pressure (for any application with no bypass valve) #### **Temperature Range** - -32°C ... +100°C / -25°F ... +212°F #### **Media Compatibility** Mineral oils, other fluids on request #### **Options and Accessories** #### Filter Elements For use with SF67 series elements For element types with seal contour type B For element types and flow characteristics see page C148 The element is not part of the scope of delivery #### Valve Bypass valve (integrated in the filter head): Optional #### **Clogging Indicators** - Visual clogging indicator with coloured segments - Electrical clogging switch 0,35 ... 2,5 bar / 5 ... 35 PSI adjustable For clogging indicator types see page C152 #### Order Code 05 15 25 #### 1 Type Spin-On Filter Head 2 Connection Style Connection Thread Code 1-1/2 150 1-7/8-12 SAE 180 3 Bypass Options 00 No bypass 0,2 bar / 3 PSI 03 0,35 bar / 5 PSI 1 bar / 15 PSI 1,7 bar / 25 PSI #### 4 Clogging Indicator Port Options | | No clogging indicator port | 0 | |--|--|---| | | Clogging indicator port drilled for return line application | 1 | | | Clogging indicator port drilled for suction line application | 2 | | | All clogging indicator ports drilled | 4 | | | Special | 9 | | | | | # STAUFF #### Double Spin-On Filter Heads - SSF-24N / 24S #### **Technical Data** #### Construction ■ In-line Double Spin-On filter head #### Material Aluminium #### **Port Connection** - NPT - SAE flange - SAE 0-ring thread #### Flow Rate - 454 I/min / 120 US GPM for return line application - 132 I/min / 35 US GPM for suction line application #### **Operating Pressure** - Max. 12 bar / 174 PSI - Max. 5,5 bar / 80 PSI differential pressure (for any application with no bypass valve) #### **Temperature Range** - -30°C ... +100°C / -22°F ... +212°F #### **Media Compatibility** • Mineral oils, other fluids on request #### **Options and Accessories** #### Filter Elements For use with SF67 and SFC-57/58 series elements For element types with seal contour type A and B For element types and flow characteristics see page C148 for SF67 and page C145 for SFC-57/58 The element is not part of the scope of delivery #### Valve Bypass valve (integrated in the head): Optional #### **Clogging Indicators** - Visual clogging indicator with coloured segments - Electrical clogging switch 0,35 ... 2,5 bar / 5 ... 35 PSI adjustable For clogging indicator types see page C152 #### Dimensions Dimensions in mm / in #### Order Code #### 4 Clogging Indicator Port Options | No clogging indicator port | 0 | |--|---| | Clogging indicator port drilled for return line application | 1 | | Clogging indicator port drilled for suction line application | 2 | | All clogging indicator ports drilled | 4 | | Special | 9 | #### **Dimensions** #### Order Code 1 Type | 0 | Thursd | 0-4 | |------------|--------------------|-----| | Connection | Thread | Cod | | NPT and | 1-1/2 and 2 | 25 | | SAE Flange | SAE Code 61 Flange | 20 | | Bypass Options | | |------------------|----| | No bypass | 00 | | 0,2 bar / 3 PSI | 03 | | 0,35 bar / 5 PSI | 05 | | 1 bar / 15 PSI | 15 | | 1,7 bar / 25 PSI | 25 | # 4 Clogging Indicator Port Options | | No clogging indicator port | | | | | |--|--|---|--|--|--| | | Clogging indicator port drilled for return line application | 1 | | | | | | Clogging indicator port drilled for suction line application | 2 | | | | | | All clogging indicator ports drilled | 4 | | | | | | Special | 9 | | | | | | Note: Standard clogging indicator port is 1/8 NPT. | | | | | #### **Double Spin-On Filter Heads • SSF-25** #### **Technical Data** #### Construction ■ In-line Double Spin-On filter head #### Material Aluminium #### **Port Connection**
- NPT - SAE flange #### Flow Rate - 454 I/min / 120 US GPM for return line application - 132 l/min / 35 US GPM for suction line application #### **Operating Pressure** - Max. 12 bar / 174 PSI - Max. 5,5 bar / 80 PSI differential pressure (for any application with no bypass valve) #### **Temperature Range** -30°C ... +100°C / -22°F ... +212°F #### **Media Compatibility** . Mineral oils, other fluids on request #### **Options and Accessories** #### **Filter Elements** Dimensions in mm / in For use with SF67 and SFC-57/58 series elements For element types with seal contour type A and B For element types and flow characteristics see page C148 for SF67 and page C145 for SFC-57/58 The element is not part of the scope of delivery #### Valve Bypass valve (integrated in the head): Optional #### **Clogging Indicators** - Visual clogging indicator with coloured segments - Electrical clogging switch 0,35 ... 2,5 bar / 5 ... 35 PSI adjustable For clogging indicator types see page C152 # STAUFF #### Tank Top Spin-On Filter Heads • SSFT-12 #### **Technical Data** #### Construction Tank Top Spin-On filter head #### Material Aluminium #### **Port Connection** NPT #### **Flow Rate** ■ 75 I/min / 20 US GPM #### **Operating Pressure** Max. 7 bar / 100 PSI #### **Temperature Range** ■ -30°C ... +100°C / -22°F ... +212°F #### **Media Compatibility** Mineral oils, other fluids on request #### **Options and Accessories** #### **Filter Elements** For use with SFCT-35/36 series elements For element types with seal contour type A and B For element types and flow characteristics see page C144 The element is not part of the scope of delivery #### Valve Bypass valve 1,7 bar / 25 PSI integrated in the filter element #### **Clogging Indicators** - Visual clogging indicator with coloured segments - Electrical clogging switch 0,35 ... 2,5 bar / 5 ... 35 PSI adjustable For clogging indicator types see page C152 #### **Dimensions** Dimensions in mm / in #### Order Code #### Tank Top Spin-On Filter Heads • SSFT-20 #### **Dimensions** #### Order Code 20 | | Spin-On Filter Head | | SSFT | |---|---------------------|--------|------| | 2 | Connection Style | | | | | Connection | Thread | Code | | | NPT | 1-1/2 | 20 | # No clogging indicator port Clogging indicator port drilled for return line application Note: Standard clogging indicator port is 1/8 NPT. #### **Technical Data** #### Construction ■ Tank Top Spin-On filter head #### Material Aluminium #### Port Connection NPT #### **Flow Rate** ■ 200 I/min / 53 US GPM #### **Operating Pressure** Max. 7 bar / 100 PSI #### **Temperature Range** ■ -30°C ... +100°C / -22°F ... +212°F #### **Media Compatibility** • Mineral oils, other fluids on request #### **Options and Accessories** #### Dimensions in mm / in Filter Elements ■ For use with SFCT-57/58 series elements For element types with seal contour type A For element types and flow characteristics see page C145 The element is not part of the scope of delivery #### Valve Bypass valve 1,7 bar / 25 PSI integrated in the filter element #### **Clogging Indicators** - Visual clogging indicator with coloured segments - Electrical clogging switch 0,35 ... 2,5 bar / 5 ... 35 PSI adjustable For clogging indicator types see page C152 # STAUFF ## Spin-On Elements • Type SFC-35 / 36 and SFCT-35 / 36 #### **Product Description** STAUFF SFC-35/36 series Spin-On Elements are used with the STAUFF SSF-12 Spin-On Filters with G3/4 threaded ports. STAUFF SFCT-35/36 series Spin-On Elements have an internal 1,7 bar / 25 PSI bypass and anti-drain back diaphragm for use with STAUFF SSFT-12 Tank Top Spin-On Filters. #### **Technical Data** #### **Connection Thread** • G3/4 #### **Seal Contour** ■ Type A (see page C133) #### **Sealing Material** ■ NBR (Buna-N®) #### **Operating Pressure** ■ SFC: Max. 12 bar / 174 PSI #### SFCT: Max. 7 bar / 100 PSI #### **Differential Pressure** - SFC: Max. 4 bar / 58 PSI - SFCT: Max. 3 bar / 43,5 PSI (for any application with no bypass valve) # 898 3.86 G3/4 Anti-Drain Back Diaphragm (only SFCT) Bypass optional (only SFCT) #### **Burst Pressure** ■ SFC: Min. 25 bar / 363 PSI # • SFCT: Min. 21 bar / 305PSI #### **Bypass Pressure** 1,7 bar / 25 PSI (only SFCT-series) #### **Temperature Range** ■ -32°C ...+100°C / -25°F ... +212°F #### Media Compatibility • Mineral oils, other fluids on request #### **Dimensions** | Order Code | Filter Paper Inorganic Glass Fibre | | | | | | | | | | |------------------------------|------------------------------------|--------------------|--------------------|--------------------|-------------------|-------------------|----------------------|-----------------------|------------------|----------------------| | Element without bypass valve | SFC-3510E | SFC-3610E | SFC-3525E | SFC-3625E | SFC-3503AE | SFC-3603AE | SFC-3510AE | SFC-3610AE | SFC-3525AE | SFC-3625AE | | Element with bypass valve | SFCT-3510E | SFCT-3610E | SFCT-3525E | SFCT-3625E | | | SFCT-3510AE | SFCT-3610AE | SFCT-3525AE | SFCT-3625AE | | | 10µт | 10µm | 25µт | 25µт | 3µт | Зµт | 10µт | 10µт | 25µт | 25µт | | Length L (mm/in) | 145 | 190 | 145 | 190 | 145 | 190 | 145 | 190 | 145 | 190 | | | 5.7 | 7.5 | 5.7 | 7.5 | 5.7 | 7.5 | 5.7 | 7.5 | 5.7 | 7.5 | | ß-Ratio | $\beta_{10} \ge 2$ | $\beta_{10} \ge 2$ | $\beta_{25} \ge 2$ | $\beta_{25} \ge 2$ | $\beta_3 \ge 200$ | $\beta_3 \ge 200$ | $\beta_{10} \ge 200$ | $\beta_{10} \geq 200$ | $B_{25} \ge 200$ | $\beta_{25} \ge 200$ | | F11 A (212) | 3305 | 4745 | 3305 | 4745 | 2140 | 3630 | 2140 | 3630 | 2140 | 3630 | | Filter Area (cm²/in²) | 510 | 735 | 510 | 735 | 330 | 560 | 330 | 560 | 330 | 560 | | Carton Quantity | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Corton Moight (kg/lba) | 0,9 | 1,3 | 0,9 | 1,3 | 0,9 | 1,3 | 0,9 | 1,3 | 0,9 | 1,3 | | Carton Weight (kg/lbs) | 2 | 26 | 2 | 26 | 2 | 26 | 2 | 26 | 2 | 26 | | Order Code | Wire Mesh | | Brass Mesh | | | | |------------------------------|------------|------------|-------------|-------------|--|--| | Element without bypass valve | SFC-3560E | SFC-3660E | SFC-35125E | SFC-36125E | | | | Element with bypass valve | SFCT-3560E | SFCT-3660E | SFCT-35125E | SFCT-36125E | | | | | 60µт | 60µт | 125µm | 125µт | | | | Length L (mm/in) | 145 | 190 | 145 | 190 | | | | Lengur L (mm/m) | 5.7 | 7.5 | 5.7 | 7.5 | | | | ß-Ratio | n/a | n/a | n/a | n/a | | | | F'' | 980 | 1390 | 980 | 1390 | | | | Filter Area (cm²/in²) | 150 | 215 | 150 | 215 | | | | Carton Quantity | 1 | 1 | 1 | 1 | | | | Corton Moight (kg/lba) | 0,9 | 1,3 | 0,9 | 1,3 | | | | Carton Weight (kg/lbs) | 2 | 2.6 | 2 | 2.6 | | | # Ø132 5.20 G1-1/4 Anti-Drain Back Diaphragm (only SFCT) Bypass optional (only SFCT) #### Spin-On Elements - Type SFC-57 / 58 and SFCT-57 / 58 #### **Product Description** STAUFF Spin-On Filter Elements of the SFC-/SFCT-57/58 series are used with the STAUFF SSF-20/24/25/100/120/130 and 160 series Spin-On Filters with G1-1/4 threaded ports. STAUFF SFCT-57/58 series Spin-On Elements have an internal 1,7 bar / 25 PSI bypass and anti-drain back diaphragm for use with STAUFF SSFT-20 Tank Top Spin-On Filters. Dimensions in mm / in #### **Technical Data** #### **Connection Thread** ■ G1-1/4 #### **Seal Contour** ■ Type A (see page C133) #### **Sealing Material** ■ NBR (Buna-N®) #### **Operating Pressure** SFC: Max. 12 bar / 174 PSI SFCT: Max. 7 bar / 100 PSI #### **Differential Pressure** - SFC: Max. 4 bar / 58 PSI - SFCT: Max. 3 bar / 43,5PSI (for any application with no bypass valve) #### **Burst Pressure** - SFC: Min. 25 bar / 363 PSI - SFCT: Min. 21 bar / 305PSI #### **Bypass Pressure** ■ 1,7 bar / 25 PSI (only SFCT-series) #### **Temperature Range** ■ -32°C ...+100°C / -25°F ... +212°F #### **Media Compatibility** • Mineral oils, other fluids on request | Order Code | Filter Paper | | | | Inorganic Glas | ss Fibre | | | | | |---|---------------------|--------------------|---------------------|---------------------|----------------------|----------------------|-----------------------|------------------|-----------------------|-----------------------| | Element without bypass valve | SFC-5710E | SFC-5810E | SFC-5725E | SFC-5825E | SFC-5703AE | SFC-5803AE | SFC-5710AE | SFC-5810AE | SFC-5725AE | SFC-5825AE | | Element with bypass valve | SFCT-5710E | SFCT-5810E | SFCT-5725E | SFCT-5825E | SFCT-5703AE | SFCT-5803AE | SFCT-5710AE | SFCT-5810AE | SFCT-5725AE | SFCT-5825AE | | | 10µт | 10µт | 25µт | 25µт | Зµт | 3µт | 10µm | 10µm | 25µт | 25µт | | Longth L (mm/in) | 180 | 226 | 180 | 226 | 180 | 226 | 180 | 226 | 180 | 226 | | Length L (mm/in) | 7.1 | 8.9 | 7.1 | 8.9 | 7.1 | 8.9 | 7.1 | 8.9 | 7.1 | 8.9 | | B-Ratio | B ₁₀ ≥ 2 | $\beta_{10} \ge 2$ | B ₂₅ ≥ 2 | B ₂₅ ≥ 2 | B ₃ ≥ 200 | B ₃ ≥ 200 | $\beta_{10} \geq 200$ | $B_{10} \ge 200$ | B ₂₅ ≥ 200 | B ₂₅ ≥ 200 | | Filher Avec (cm-2/im2) | 5560 | 7360 | 5560 | 7360 | 4450 | 5890 | 4450 | 5890 | 4450 | 5890 | | Filter Area (cm ² /in ²) | 860 | 1140 | 860 | 1140 | 700 | 910 | 700 | 910 | 700 | 910 | | Carton Quantity | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Carton Weight (kg/lbs) | 1,4 | 1,85 | 1,4 | 1,85 | 1,4 | 1,85 | 1,4 | 1,85 | 1,4 | 1,85 | | Garton Weight (Kg/IDS) | 3 | 1 | 3 | 4 | 3 | 1 | 3 | 4 | 3 | Δ | | Order Code | Wire Mesh | | Brass Mesh | | | |---|------------|------------|-------------|-------------|--| | Element without bypass valve | SFC-5760E | SFC-5860E | SFC-57125E | SFC-58125E | | | Element with bypass valve | SFCT-5760E | SFCT-5860E | SFCT-57125E | SFCT-58125E | | | | 60µт | 60µт | 125µm | 125µт | | | Length L (mm/in) | 180 | 226 | 180 | 226 | | | Lengur E (min/in) | 7.1 | 8.9 | 7.1 | 8.9 | | | ß-Ratio | n/a | n/a | n/a | n/a | | | Filter Area (cm ² /in ²) | 1940 | 2570 | 1940 | 2570 | | | Filter Area (cm ⁻ /in ⁻) | 300 | 400 | 300 | 400 | | | Carton Quantity | 1 | 1 | 1 | 1 | | | Carton Waight (kg/lba) | 0,9 | 1,3 | 0,9 | 1,3 | | | Carton Weight (kg/lbs) | 2 | 2.6 | 2.6 2 | | | #### Spin-On Elements • Type SF63 #### **Product
Description** STAUFF SF63-series Spin-On Elements are used with the STAUFF SLF Spin-On Filters. # 077,5 3.05 3/4–16 UNF Dimensions in mm / in #### **Technical Data** #### **Connection Thread** ■ 3/4-16 UNF #### **Seal Contour** ■ Type A (see page C133) #### **Sealing Material** ■ NBR (Buna-N®) #### **Operating Pressure** Max. 14 bar / 200 PSI #### **Differential Pressure** Max. 5,5 bar / 80 PSI (for any application with no bypass valve) #### **Burst Pressure** Min. 20 bar / 290 PSI #### **Bypass Pressure** - SF6310-18 1,24 bar / 18 PSI - SF6325-10 0,70 bar / 10 PSI #### **Temperature Range** ■ -32°C ... +100°C / -25°F ... +212°F #### **Media Compatibility** Mineral oils, other fluids on request | | Filter Paper | | | |---------------------------|---------------------|--------------------|--| | Order Code | SF6310-18 | SF6325-10 | | | | 10µт | 25µт | | | B-Ratio | B ₁₀ ≥ 2 | $\beta_{25} \ge 2$ | | | Filter Area (cm²/in²) | 825
125 | 825
125 | | | Dirt Holding Capacity (g) | 6 | 6 | | | Carton Quantity | 12 | 12 | | | Carton Weight (kg/lbs) | 3,6 | 3,6 | | | Garton Weight (Kg/IDS) | 8 | 8 | | # Ø93,2 3.67 1-12 UNF #### Spin-On Elements • Type SF65 #### **Product Description** STAUFF SF65-series Spin-On Elements are used with the STAUFF SAF series Spin-On Filters. #### Dimensions in mm / in #### **Technical Data** #### **Connection Thread** ■ 1-12 UNF #### **Seal Contour** Type A (see page C133) #### **Sealing Material** ■ NBR (Buna-N®) #### **Operating Pressure** Max. 14 bar / 200 PSI #### **Differential Pressure** ■ Max. 5,5 bar / 80 PSI (for any application with no bypass valve) #### **Burst Pressure** Min. 20 bar / 290 PSI #### **Temperature Range** ■ -32°C ... +100°C / -25°F ... +212°F #### **Media Compatibility** • Mineral oils, other fluids on request | | Filter Paper | | | | Inorganic Glass F | bre | | Water Absorbing | |---------------------------------|---------------------|---------------------|--------------------|--------------------|----------------------|------------------|----------------------|--------------------------------------| | Order Code | SF6520 | SF6521 | SF6510 | SF6511 | SF6549 | SF6505 | SF6504 | SF6520-W | | | 10µm | 10µт | 25µт | 25µт | Зµт | 12µт | 25µт | 10µm
water
absorb | | 1 II. 1 . (| 147 | 204 | 147 | 204 | 147 | 147 | 147 | 133 | | Length L (mm/in) | 5.76 | 8.00 | 5.76 | 8.00 | 5.76 | 5.76 | 5.76 | 5.25 | | B-Ratio | B ₁₀ ≥ 2 | B ₁₀ ≥ 2 | $\beta_{25} \ge 2$ | $\beta_{25} \ge 2$ | B ₃ ≥ 200 | $B_{12} \ge 200$ | $\beta_{25} \ge 200$ | $B_{10} \ge 2$ | | F:\h A (2(:2) | 2302 | 3881 | 2212 | 3388 | 2519 | 2405 | 2405 | 1225 | | Filter Area (cm²/in²) | 355 | 600 | 340 | 525 | 390 | 370 | 370 | 200 | | Dirt Holding Capacity ACFTD (g) | 14.4 | 22 | 20.4 | 31.2 | 19 | 11 | 26 | Water holding capacity 162 ml 5.5 oz | | Carton Quantity | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Carton Weight (kg/lbs) | 6,3 | 8,4 | 6,4 | 8,8 | 8,6 | 8,6 | 8,6 | 8,6 | | Garton Weight (Kg/IDS) | 13.9 | 18.5 | 14.2 | 19.4 | 19 | 19 | 19 | 19 | ## **ESTAUFF**® #### Spin-On Elements - Type SF67 #### **Product Description** STAUFF SF67-series Spin-On Elements are used with the STAUFF SSF20/24/25/100/120/130/160/150 and 180 Spin-On Filters. #### **Technical Data** **Connection Thread** ■ 1-1/2-16 UN #### **Seal Contour** ■ Type B (see page C133) #### **Sealing Material** ■ NBR (Buna-N®) #### **Operating Pressure** Max. 14 bar / 200 PSI # Ø128 5.10 1-1/2-16 UN Dimensions in mm / in #### Differential Pressure Max. 5,5 bar / 80 PSI (for any application with no bypass valve) #### **Burst Pressure** Min. 20 bar / 290 PSI #### **Temperature Range** ■ -32°C ... +100°C / -25°F ... +212°F #### **Media Compatibility** • Mineral oils, other fluids on request | | Inorganic Glass | Fibre | | | | | | | | |---------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|-----------------------|----------------------| | Order Code | SF6702-MG | SF6703-MG | SF6704-MG | SF6706-MG | SF6707-MG | SF6730-MG | SF6731-MG | SF6728-MG | SF6726-MG | | | 1µт | Зµт | Зµт | 6µт | 6µт | 12µт | 12µт | 25µт | 25µт | | Longth L (mm/in) | 270 | 168 | 270 | 168 | 270 | 168 | 270 | 168 | 270 | | Length L (mm/in) | 10.6 | 6.6 | 10.6 | 6.6 | 10.6 | 6.6 | 10.6 | 6.6 | 10.6 | | B-Ratio | B ₁ ≥ 200 | B ₃ ≥ 200 | B ₃ ≥ 200 | B ₆ ≥ 200 | B ₆ ≥ 200 | B ₁₂ ≥ 200 | B ₁₂ ≥ 200 | B ₂₅ ≥ 200 | $\beta_{25} \ge 200$ | | F'' | 8167 | 4051 | 8167 | 4051 | 7200 | 4051 | 7522 | 4051 | 8167 | | Filter Area (cm²/in²) | 1265 | 625 | 1265 | 625 | 1116 | 625 | 1165 | 625 | 1265 | | Dirt Holding Capacity ACFTD (g) | 30 | 31 | 47 | 35 | 54 | 38 | 59 | 50 | 76 | | Carton Quantity | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | Corton Moight (kg/lbg) | 11,8 | 8,2 | 11,8 | 8,2 | 11,8 | 8,2 | 11,8 | 8,2 | 11,8 | | Carton Weight (kg/lbs) | 26.1 | 18 | 26.1 | 18 | 26.1 | 18 | 26.1 | 18 | 26.1 | | | Filter Paper | | | | Stainless Wire Mesh | ı | Water Absorbing | |---------------------------------|---------------------|--------------------|---------------------|---------------------|---------------------|-------------|--| | Order Code | SF6720 | SF6721 | SF6710 | SF6711 | SF6790 | SF6791 | SF6721-W | | | 10µm | 10µm | 25µm | 25µт | 144µm | 144µm | 10µm
water
absorb | | Length L (mm/in) | 168
6.6 | 270
10.6 | 168
6.6 | 270
10.6 | 168
6.6 | 270
10.6 | 270
10.6 | | B-Ratio | B ₁₀ ≥ 2 | $\beta_{10} \ge 2$ | β ₂₅ ≥ 2 | β ₂₅ ≥ 2 | n/a | n/a | $\beta_{10} \ge 2$ | | Filter Area (cm²/in²) | 3677
570 | 6813
1055 | 3677
570 | 6813
1055 | 1290
200 | 2032
315 | 4440
690 | | Dirt Holding Capacity ACFTD (g) | 34 | 62 | 34 | 62 | n/a | n/a | Water holding capacity
444 ml / 15 oz | | Carton Quantity | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | Carton Maight (kg/lha) | 6,6 | 7,9 | 6,7 | 9,3 | 8,2 | 11,8 | 11,8 | | Carton Weight (kg/lbs) | 14.6 | 17.5 | 14.9 | 20.6 | 18 | 26.1 | 26.1 | #### Spin-On Elements - Type SFC/SFCT-35/36, SFC/SFCT-57/58 and SF63 The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cSt). The characteristics have been determined in accordance to ISO 3968. SFC-35/36 series Spin-On Elements are used with STAUFF SSF-12 Spin-On Filters, SFCT-35/36 series Spin-On Elements are used with STAUFF SSF-12 Spin-On Filters, SFC-57/58 series Spin-On Elements are used with STAUFF SSF-20/24/25/100/120/130/160 Spin-On Filters, SFCT-57/58 series Spin-On Elements are used with STAUFF SSFT-20 Spin-On Filters and SF63 series Spin-On Elements are used with STAUFF SLF-02/03/04 Spin-On Filters. Filtration Technology #### Spin-On Elements - Type SF65 The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cSt). The characteristics have been determined in accordance to ISO 3968. SF65 Spin-On Elements are used with the STAUFF SAF-05/06/07/10/11/13 Spin-On Filters. #### Spin-On Elements - Type SF67 The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cSt). The characteristics have been determined in accordance to ISO 3968. SF67 Spin-On Elements are used with the STAUFF SSF-20/24/25/100/120/130/160/150/180 Spin-On Filters. #### **Clogging Indicators** #### **Visual Clogging Indicators** | Visual | Visual Vacuum Clogging Indicators (for Spin-On Filter in suction line applications) | | | | | | | | |--------|---|--------------|---------|----------|------------|---------|-------|-----------------| | | Typo | Thread | Unit of | Range of | Coloured S | egments | | Valve setting | | | Туре | Connection G | scale | scale | Green | Yellow | Red | Spin-On Filter | | BSP | SIS | 1/8 | cm Hg | -76 0 | -13 0 | -1813 | -7618 | 0,2 bar/ 3 PSI | | NPT | GV-5 | 1/8 | in Hg | -30 0 | -4 0 | -64 | -306 | 0,2 bar/ 3 PSI | | IVFI | GV-10 | 1/8 | in Hg | -30 0 | -9 0 | -119 | -3011 | 0,35 bar/ 5 PSI | | Visua | Visual Pressure Clogging Indicators (for Spin-On Filter in return line applications) | | | | | | | | |--------|--|--------------|-------|-------|--------------|-------------|---------------|------------------| | | Type Thread Unit of Range of Coloured Segments | | | | | | Valve setting | | | | Турс | Connection G | scale | scale | Green | Yellow | Red | Spin-On Filter | | | SIM-02 | 1/8 | bar | 0 2,5 | 0 1,2 | 1,2 1,5 | 1,5 2,5 | 1,7 bar / 25 PSI | | BSP | SIM-04 | 1/8 | bar | 0 4 | 0 2,5 | 2,5 3 | 3 4 | 1,7 bar/ 25 PSI | | | SIM-12 | 1/8 | bar | 0 12 | without cold | ured segmen | its | 1,7 bar/ 25 PSI | | NPT | CI-12 | 1/8 | PSI | 0 100 | 0 13 | 13 15 | 15 100 | 1 bar/ 15 PSI | | IVI' I | CI-20 | 1/8 | PSI | 0 100 | 0 21 | 21 25 | 25 100 | 1,7 bar/ 25 PSI | #### **Electrical Clogging Indicators** | Electri | Electrical Clogging Indicators (for Spin-On Filter in return line or suction line applications) | | | | | | | | | |---------|---|------------------------|------------------|--|--------------------|----------------------------|---------------------------------|--|--| | | Туре | Thread
Connection G | Unit
of scale | Adjustable range /
Actuating pressure | Max. over pressure | Spin-On filter application | Valve setting
Spin-On Filter | | | | | SIE-NO | 1/8 | bar | 1,3 (normally open) | 80 bar / 1160 PSI | Return line application | 1,7 bar / 25 PSI | | | | BSP | SIE-NC | 1/8 | bar | 1,3 (normally closed) | 80 bar / 1160 PSI | Return line application | 1,7 bar / 25 PSI | | | | DOP | EPS-1B | 1/8 | bar | 0,35 2,5 | 25 bar / 362 PSI | Return line application | 1,7 bar /
25 PSI | | | | | EVS-1B | 1/8 | mbar | -1000150 | 25 bar / 362 PSI | Suction line application | 0,2 bar / 3 PSI | | | | NPT | EPS-1 | 1/8 | PSI | 5 35 | 24 bar / 350 PSI | Return line application | 1,7 bar / 25 PSI | | | | INP | EVS-1 | 1/8 | in Hg | -305 | 24 bar / 350 PSI | Suction line application | 0,2 bar / 3 PSI | | | #### **Technical Data SIE / EPS / EVS** | | Type EPS-1 / 1B | Type EVS-1 / 1B | | | | | |------------------------|-----------------------------|---|--|--|--|--| | Electrical data | 6 Amp 125/250 V AC | | | | | | | Protection | DIN 43650 IP65 | | | | | | | Temperature Range | -5°C +90°C / +23°F +194°F | -5°C +90°C / +23°F +194°F (ambient and media) | | | | | | Diaphragm Material | NBR (Buna-N®) | NBR (Buna-N®) | | | | | | Housing Material | Brass | Steel | | | | | | Adjustable Range | 0,35 bar 2,0 bar / 5 30 PSI | 150 1000 mbar / 5 30 in Hg | | | | | | Dead Band | 20% F.S. | 25% F.S. | | | | | | Weight | 0,1 kg / .22 lbs | 0,1 kg / .22 lbs | | | | | | Repeatability | ± 2% | | | | | | | Hirschmann Connector V | Vith Strain Relief | | | | | | | | Type SIE (electrical switch) | |---|---| | Electrical data | 48V | | Protection | DIN 43650 IP54 | | Temperature Range | -5 °C +60 °C / +23 °F +140 °F (ambient and media) | | Diaphragm Material | NBR (Buna-N®) | | Housing Material | Brass | | Actuating Pressure | 1,3 bar / 19 PSI | | Max. current (res.) | 0,5 A | | Max. current (ind.) | 0,2 A | | Available as "normally (opens contact at actual | open" (closes contact at actuating pressure) and as "normally closed"
ting pressure) | #### **Dimensions** Type SIM / SIS Type GV / CI Type SIE Type EPS / EVS C152 www.stauff.com #### **Product Description** STAUFF Offline and Bypass Filter Systems are designed to keep hydraulic and lubrication systems free of particles and water contamination. STAUFF OLS and BPS Units utilize the STAUFF Systems concept for the removal of contamination from hydraulic and lubrication systems. Desiccant Air Breathers, which clean and dry the air entering the reservoir, are also part of this contamination removal system. STAUFF Systems will provide optimal system cleanliness for today's sophisticated hydraulic and lubrication systems. #### **Technical Data** Construction Offline Filter System with integrated motor / pump unit ■ BPS: Bypass Filter System Materials • 0LS: Anodized Aluminium Housing: Sealings: NBR (Buna-N®) **Port Connection** • 0LS: G3/8, G1/2, G3/4 and 18 L BPS: G1/4 and G1/2 **Differential Pressure** Max. 6,2 bar / 90 PSI **Nominal Flow** ■ 2,1 ... 17 I/min / .55 ... 4.5 US GPM Max. System Volume ■ Up to 10800 I / 2853 gal **Temperature Range** ■ Max. +80 °C / +176 °F media temperature **Media Compatibility** Mineral and lubrication oils, other fluids on request #### **Options and Accessories** Valve Bypass valve: Setting 6,2 bar / 90 PSI integrated in filter head **Clogging Indicator** Visual clogging indicator Motor Types (only OLS) Several motor types available for more information please have a look at page C160 C153 #### The STAUFF System Filter Element SRM-30 **Filter Element Design** Air Conditioners SDB / SVDB #### **System Contamination** In today's hydraulic market it is an accepted fact that contamination causes 70 % of all mechanical failures. This contamination results from the presence of solid particles such as metal, sand and rubber. Changes in temperature cause water vapour to condense, resulting in unwanted water in the oil, the presence of this water accelerates the deterioration of the oil. Mainstream filters are incapable of removing particles, smaller than 2 micron (better known as silt). Fluctuations in pressure and flow result in changing conditions preventing these filters from carrying out fine filtration; most of the silt remains in the system affecting the chemical composition of the oil. All these problems lead to reduced oil life and increased component wear, maintenance costs and machine down time Removing silt and preventing the formation of free water will combat these problems. #### **Micro Filtration** At the heart of the STAUFF Offline and Bypass Filter Unit is the unique microfilter element. This filter is designed with a radial flow path. The element is constructed with 0,5 micron media and is therefore able to remove the smallest particles (silt) from the oil. The filter material is composed primarily of cellulose, which is applied by a special wrapping method. Glass fibre and water absorbing elements are available on request. The cellulose material is capable of retaining solid particles and absorbing water. This helps to prevent chemical deterioration of the oil and the formation of various acids and Hydraulic cylinder extension for example, can draw air, solid contamination particles and water vapour into the oil reservoir. The water vapour condenses due to temperature changes and causes not only oxidation of the oil, but can also lead to serious mechanical wear in the system. #### Air Conditioning Standard air filters remove a certain amount of solid particle contamination from the air but allow water vapour, to pass through. The STAUFF "Air conditioners" type SDB and SVDB ensure that incoming air is first dried and then filtered. The SDB and SVDB units should be used in conjunction with the OLS / BPS Systems in order to provide a more complete filtering system. See Hydraulic Accessories section of this catalog for more details. #### **Advantages** - Less mailfunction - · Protection of expensive main stream filters - · Less frequent oil changes - Extended Usable life of the oil - Less machine downtimes #### **Characteristics** - A filter fineness of 0,5 micron $\beta_{0.5} \ge 200$, $\beta_2 \ge 2330$ - Large particle collection capacity - · High filtration capacity due to depth effect - Large water adsorption capacity - Do not adversely affect viscosity or additives - Do not remove additives - Reduce the oxidation process - Reduce the forming of acids - · With two measuring points for particle counter or oil sampling - SAVE COSTS #### **Applications** - Mining - Harvesting - Forestry - Agricultural - Off-road Fishing - Road construction - Cranes - · Airport equipment - Flight simulators - Pulp and paper - Food processing - Presses - Automotive industry - Timber plants - Plastic and rubber - Metal industry - Cement and concrete - Material handling - Bridges/Hydraulic locks/Water works - · Petrochemical industry Power stations - Marine - Steel #### Offline Filters • Type OLS #### **Product Description** STAUFF Offline Filter Units can be applied to every imaginable industrial application where hydraulic or lubrication systems are present. An integrated motor/pump unit draws fluid out of the tank, filters it and pumps clean oil back into the system. Offline Filter Units can continue to work even when the main system is not in use. The standard range offers filter units for reservoirs with a capacity of up to 10800 I / 2853 gal. Over the years, STAUFF Systems have developed considerable experience in the hydraulic and lubrication market cleaning systems to levels not previously possible with conventional methods. With its integrated motor/pump unit STAUFF OLS Filter Systems are specially designed for Offline filtration of a hydraulic main system. This allows continuous filtration of the fluid even when the main system has been shut down. The OLS is available with one, two or four filter housings and in two different lengths. The maximum flow for the Off-Line Unit goes from 2,1 ... 17 l/min / .55 ... 4.5 US GPM at a viscosity between 20 ... 160 cSt. For the OLS you can choose several different motor/pump units, for more information please see page C160 (Order code). All Offline Filter Systems are available with air driven motors. These units are ideal for areas where electric power is unavailable or for hazardous locations. Single Length (see page C156 / C157) OLS - 1A - 30 - H - B OLS - 2A - 30 - H - B OLS - 4A - 30 - H - B Double Length (see page C158 / C159) OLS - 1B - 30 - H - B OLS - 2B - 30 - H - B OLS - 4B - 30 - H - B #### Offline Filters • Type OLS #### Dimensions OLS - 1A - 30 - H - B #### Dimensions OLS - 2A - 30 - H - B C156 www.stauff.com * recommended space for element change #### Dimensions OLS - 4A - 30 - H - B Dimensions and Technical Data All dimensions in mm / in #### **Technical Data** | | 0LS-1A-30-H-B | OLS-2A-30-H-B | OLS-4A-30-H-B | | | | | | |---|---|--------------------------|---------------------------------------|--|--|--|--|--| | Number of Filter Housings | 1 | 2 | 4 | | | | | | | Nominal Flow | 2,1 l/min | 4,2 l/min | 8,4 l/min | | | | | | | Nominal Flow | .55 US GPM | 1.1 US GPM | 2.22 US GPM | | | | | | | Max. Differential Pressure | Max. 6,2 bar | | | | | | | | | Max. Dillerellual Flessure | 90 PSI over the filter element without backpressure | | | | | | | | | Max. Fluid Temperature | | | | | | | | | | max. Fluid Temperature | | | | | | | | | | Max. Housing Pressure | 20 bar | 20 bar | | | | | | | | Max. Housing Flessure | 290 PSI | | | | | | | | | Viscosity Range | 20 160 cSt | | | | | | | | | | 100 750 SUS | | | | | | | | | Connection Suction Side | G3/8 | G1/2 | | | | | | | | Connection Return Line Side | G1/2 | | EW 18L-3/4 | | | | | | | Hose Diameter | 1/2 in (inner diameter) flexible hose | | 3/4 in (inner diameter) flexible hose | | | | | | | Weight (Including Element) | 14 kg | 21 kg | 39 kg | | | | | | | weight (including Element) | 30.9 lbs | 46.3 lbs | 86 lbs | | | | | | | May Custom Volume | 1350 | 2700 | 5400 | | | | | | | Max. System Volume | 356 gal | 713 gal | 1426 gal | | | | | | | Dimensions | 420 x 335 x 190 mm | 425 x 340 x 323 mm | 514 x 494 x 331 mm | | | | | | | HxWxD | 16.54 x 13.19 x 7.48 in | 16.73 x
13.39 x 12.72 in | 20.24 x 19.45 x 13.03 in | | | | | | | Connection for Online Particle
Counter | STAUFF Test (M16 x 2) | | | | | | | | | Pump | Gear pump | | | | | | | | | Motor | See page C160 for electric motor detail | S | | | | | | | # STAUFF #### Offline Filters • Type OLS #### Dimensions OLS - 1B - 30 - H - B # 700 * 27.56 728 160 6.30 120 4.72 149 Inlet 1.93 21.83 335 13.19 190 7.48 170 6.69 190 * recommended space for element change #### Dimensions OLS - 2B - 30 - H - B #### Dimensions OLS - 4B - 30 - H - B All dimensions in mm / in #### **Technical Data** | | OLS-1B-30-H-B | 0LS-2B-30-H-B | 0LS-4B-30-H-B | |---|--|--------------------------|---------------------------------------| | Number of Filter Housings | 1 | 2 | 4 | | Nominal Flow | 4,2 I/min
1.1 US GPM | 8,4 I/min
2.22 US GPM | 17 I/min
4.5 US GPM | | Max. Differential Pressure | Max. 6,2 bar
90 PSI over the filter element without backpress | sure | | | Max. Fluid Temperature | +80 °C
+176 °F | | | | Max. Housing Pressure | 20 bar
290 PSI | | | | Viscosity Range | 20 160 cSt
100 750 SUS | | | | Connection Suction Side | G1/2 | G1/2 | G3/4 | | Connection Return Line Side | G1/2 | · | EW 18L-3/4 in | | Hose Diameter | 1/2 in (inner diameter) flexible hose | | 3/4 in (inner diameter) flexible hose | | Weight (Including Element) | 18 kg
39.7 lbs | 30 kg
66.1 lbs | 61 kg
134.5 lbs | | Max. System Volume | 2700 I
713 gal | 5400 I
1426 gal | 10800 I
2853 gal | | Dimensions | 728 x 335 x 190 mm | 734 x 340 x 323 mm | 809 x 494 x 346 mm | | HxWxD | 28.66 x 13.19 x 7.48 in | 28.90 x 13.39 x 12.72 in | 31.85 x 19.45 x 13.62 in | | Connection for Online Particle
Counter | STAUFF Test (M16 x 2) | | | | Pump | Gear pump | | | | Motor | See page C160 for electric motor details | | | #### Offline Filter Housings / Complete Filters - Type OLS #### Filter Elements - Type SRM #### Technical Data on Electric Motors used for OLS Filters (For air driven motors contact STAUFF) | E-motor | Standard Configuration | Description | Power
in kW | Power in HP | Voltage
50 Hz | Amp
50 Hz | | | Amp
60 Hz | RPM
60 Hz | |---------|------------------------|-----------------------------|----------------|-------------|------------------|--------------|------|--------------|--------------|--------------| | C, D | OLS-1A OLS-2A OLS-1B | M63 B3/B5 4P 110V MULTIVOLT | 0,18 | 0.24 | 110 V AC | 3,30 | | 110 V AC | 2,70 | | | A, F | OLS-1A OLS-2A OLS-1B | M63 B3/B5 4P 230 MULTIVOLT | 0,18 | 0.24 | 230 V AC | 1,57 | | 230 V AC | 1,34 | | | 0 | OLS-1A OLS-2A OLS-1B | M63 B3/B5 4P 3PH MULTIVOLT | 0,18 | 0.24 | 230/400 V AC | 1,03 / 0,60 | | 254/440 V AC | 0,90 / 0,52 | | | 0 | OLS-2B OLS-4A | M63 B3/B5 4P 3PH MULTIVOLT | 0,29 | 0.39 | 230/400 V AC | 1,65 / 0,95 | 1460 | 254/440 V AC | 1,47 / 0,85 | 1740 | | C, D | OLS-2B OLS-4A OLS-4B | M71 B3/B5 4P 110V MULTIVOLT | 0,37 | 0.50 | 110 V AC | 6,10 | | 110 V AC | 5,20 | | | A, F | OLS-2B OLS-4A OLS-4B | M71 B3/B5 4P 230V MULTIVOLT | 0,37 | 0.50 | 230 V AC | 3,00 | | 230 V AC | 2,65 | | | 0 | OLS-4B | M71 B3/B5 4P 3PH MULTIVOLT | 0,37 | 0.50 | 230/400 V AC | 1,90 / 1,10 | | 254/440 V AC | 1,60 / 0,93 | | #### Water Absorbing Offline Filter - Type OLSW #### **Product Description** STAUFF Systems Units are characterized by their extremely efficient filter elements which are rated to 0,5 micron. Specially designed for industrial hydraulic installations the STAUFF Offline Filters are available in single or double length configurations. The Offline Filter Units can easily be mounted to new and existing hydraulic installations. By means of an integrated motor/pump unit and an Offline Filter, the oil is pumped from the reservoir through the filter unit and after filtering the oil is then returned to the tank. #### **Economical** The hydraulic market accepts that 70 % of mechanical failures are caused by contamination in the system. The STAUFF Water Absorbing Offline Filters attack this contamination at source and in addition to solid particles, these filters are also capable of removing large quantities of water from the oil. This prevents the catalytic reaction of water and solid particle contamination, resulting in extended useable oil life. The application of STAUFF filters results in lower component failure rates, less down time and less system maintenance. #### **Water Absorbing** STAUFF Water Absorbing Filters are Offline Units that use special water absorbing Spin-On Filter Elements as a pre-filter. The fluid is pumped through the pre-filter which removes most water and larger solid contamination, in the second stage the fluid passes through the STAUFF Micro Filter where final water removal takes place as well as solid removal down to 0,5 micron. In recent years STAUFF Systems have developed a great deal of experience in cleaning and drying hydraulic and lubrication systems in the following markets: - Steel industry - Maritime industry - Petrochemical industry - Paper industry #### **Advantages** - Extremely clean oil due to the high filtration efficiency $\beta_2 > 2330$ - Prevention of channel forming by radial filtration direction - Increased flow capacity - Increased dirt-hold capacity - Large water holding capacity - Compact and easy-maintenance design - Longer usage life for oil and components # STAUFF #### Water Absorbing Offline Filter • Type OLSW #### Dimensions OLSW - 1A - 30 #### Dimensions OLSW - 1B - 30 #### **STAUFF Systems** Water Absorbing Offline Filter • Type OLSW #### Dimensions OLSW - 2A - 30 #### Dimensions OLSW - 2B - 30 * recommended space for element change * recommended space for element change www.stauff.com C163 All dimensions in mm / in ## **ESTAUFF**® #### Water Absorbing Offline Filter - Type OLSW #### Dimensions OLSW - 4A - 30 #### Dimensions OLSW - 4B - 30 #### Water Absorbing Offline Filter • Type OLSW #### **Technical Data OLSW** | Type Filter | OLSW - 1A - 30 - H - B | OLSW - 1B - 30 - H - B | OLSW - 2A - 30 - H - B | 0LSW - 2B - 30 - H - B | OLSW - 4A - 30 - H - B | OLSW - 4B - 30 - H - B | | | |--|--|--------------------------|--------------------------|--------------------------|------------------------------|--------------------------|--|--| | | | | | | | | | | | Number of Filter Housings | 1 2 2 4 4 | | | | | | | | | Material Filter Housings | Anodized Aluminum | | | | | | | | | Sealing Material | NBR (Buna-N®, standard) | | | | | | | | | Nominal Flow | 2,1 I/min | 4,2 I/min | 4,2 I/min | 8,4 I/min | 8,4 I/min | 16,8 I/min | | | | | .6 US GPM | 1.1 US GPM | 1.1 US GPM | 2.2 US GPM | 2.2 US GPM | 4.4 US GPM | | | | Bypass Opening Pressure
(over the filter element without
backpressure) | 6,2 bar
90 PSI | 90 PSI | | | | | | | | Number of Standard Filter Elements | 1 | 2 | 2 | 4 | 4 | 8 | | | | Number of Pre-Filter Elements | 1 | 1 | 1 | 1 or 2 | 1 or 2 | 1 or 2 | | | | Water Absorbing Capacity | 690 ml | 840 ml | 840 ml | 840 ml | 840 ml | 1740 ml | | | | water Austrumy Gapacity | 23 oz. | 28 oz. | 28 oz. | 28 oz. | 28 oz. | 58 oz. | | | | Max. Pressure Filter Housing | 20 bar
290 PSI | | | | | | | | | Max. Oil Temperature | +80 °C
+176 °F | | | | | | | | | Max. Viscosity | 20 160 cSt
100 750 SUS | | | | | | | | | Indicator Type | Visual clogging indicator | | | | | | | | | Connection Pump Suction | G1/2 female | | | | | G3/4 female | | | | Diameter Hose Suction Side | 1/2 in | | | | | 3/4 in | | | | Filter Return Connection | G1/2 female | | | | EW 18L - 3/4 in | | | | | Diameter Hose Return Side | 1/2 in | | | | 3/4 in or 1 in (with long ho | oses) | | | | Dimensions | 402 x 379 x 323 mm | 707 x 379 x 323 mm | 402 x 529 x 323 mm | 707 x 530 x 323 mm | 518 x 296 x 506 mm | 809 x 339 x 506 mm | | | | HxBxL | 15.83 x 14.92 x 12.72 in | 27.84 x 14.29 x 12.72 in | 15.83 x 20.83 x 12.72 in | 27.83 x 20.87 x 12.72 in | 20.39 x 11.65 x 19.92 in | 31.85 x 13.35 x 19.92 in | | | | Pump type | Gear pump | | | | | | | | | Power Supply E-Motor | Various electrical power su | pplies possible | | | | | | | | Weight (including Element) | 18 kg | 22 kg | 25 kg | 34 kg | 43 kg | 65 kg | | | | | 39.7 lbs | 48.5 lbs | 55. 1 lbs | 75.0 lbs | 94.8 lbs | 143.3 lbs | | | | Max. System Volume | 1350 | 2700 | 2700 | 5400 | 5400 | 10,800 | | | | | 356 gal | 713 gal | 713 gal | 1427 gal | 1427 gal | 2853 gal | | | | Standard Units for larger system vo | lumes are also available | | | | | | | | | Connection Oil-Analysis:
P1 filter inlet side
P2 filter outlet side | Test connector (M16 x 2) F
Test connector (M16 x 2) F | | | | | | | | Water absorbing spin-on filter element #### $\Delta \textbf{p}$ / Viscosity for OLSW-Filter # System Example Schematic Offline Filtration incl. Water Absorption #### Water Absorbing Offline Filter Housings / Complete Filters - Type OLSW #### **Pre-Filter Elements • Type SF67** Inorg. glass fibre (water absorption) Inorg. glass fibre and polymer 1 3 5 10 20 5 E01 E03 E05 E10 E20 WA Pre-Filter Elements SF6721-W Spin-on filter element, water absorbing, 10 micron SF6702-MG Spin-on filter element, inorganic glass fibre, 1 micron SF6704-MG Spin-on filter element, inorganic glass fibre, 3 micron SF6707-MG Spin-on filter element, inorganic glass fibre, 6 micron SF6731-MG Spin-on filter element, inorganic glass fibre, 12 micron SF6726-MG Spin-on filter element, inorganic glass fibre, 25 micron Spin-on filter element, filter paper, 10 micron SF6721 SF6711 Spin-on filter element, filter paper, 25 micron SF6791 Spin-on filter element, wire mesh, 125 micron #### Filter Elements - Type SRM #### **Heated Offline Filters • Type OLSH** #### **Product Description** STAUFF System Units are characterized by their pre-heating unit and extremely efficient filter elements with a fineness of
0,5 micron. Specially designed for industrial hydraulic installations, the STAUFF Offline Filters are available in single or multiple housing configurations. The Offline Filter Units can easily be mounted to new and existing hydraulic installations. By means of an integrated motor/pump unit and an Offline Filter, the oil is pumped from the reservoir through the filter unit and after filtering the oil is then returned to the tank. #### **Economical** The hydraulic market accepts that 70 % of the mechanical failures are caused by contamination in the system. The STAUFF Offline Filters attack this contamination at the source. In addition to solid particles, these filters are also capable of removing water from the oil. This prevents the catalytic reaction of water and solid particle contamination, resulting in extended usable of life. The application of STAUFF Filters results in lower component failure rates, less down time and less system maintenance. In recent years STAUFF Systems have developed a great deal of experience in cleaning and drying hydraulic and lubrication systems in the following markets: - Steel industry - Maritime industry - Petrochemical industry - Paper industry #### **Heated Offline Filters** The electric pre-heating ensures that the cold and/or high viscosity fluid is brought to a temperature with a suitable filtration viscosity. Offline Filters with pre-heating can be applied to new or existing installations. The integrated pump-motor combination draws fluid from the reservoir, pumps it through a heating element, filters the fluid and returns it to the reservoir. #### **Advantages** - Extremely clean oil due to the high filtration efficiency $\beta_{0.5} \ge 200$, $\beta_2 \ge 2330$ - Prevention of channel forming by radial filtration direction - Increased flow capacity - Increased dirt holding capacity - Large water holding capacity - · Compact and easy maintenance design - · Longer usage life for oil and components # STAUFF #### **Heated Offline Filters • Type OLSH** #### **Dimensions OLSH - 1A** #### **Heated Offline Filters • Type OLSH** #### **Technical Data Heated Offline Filters** | | OLSH - 1A - 30 | 0LSH - 1B - 30 | | | | |--|---|-------------------------|--|--|--| | Number of Filter Housings | 1 | 1 | | | | | Nominal Flow Rate | 2,1 I/min | 4,2 l/min | | | | | | .6 US GPM
Max. 6,2 | 1.2 US GPM | | | | | Max. Differential Pressure | 290 PSI over the filter element without back pressure | | | | | | Max. Fluid Temperature | +80 °C
+176 °F | | | | | | Max. Housing Pressure | 20 bar
290 PSI | | | | | | Heater Capacity | 2 kW | | | | | | Connection Suction Side | G3/8 | | | | | | Connection Return Side | G1/2 | | | | | | Hose Diameter | 1/2 in 3/4 in (inner diameter) flexible hose | | | | | | Weight (including Element) | 24 kg
44 lbs | 28 kg
62 lbs | | | | | | 1350 | 2700 1 | | | | | Max. System Volume | 356 gal | 713 gal | | | | | Dimensions | 567 x 482 x 189 mm | 834 x 482 x 190 mm | | | | | H x W x D | 22.32 x 18.98 x 7.44 in | 32.84 x 18.98 x 7.48 in | | | | | Connection for On-Line Particle
Counter | STAUFF Test (M16 x 2) | STAUFF Test (M16 x 2) | | | | | Pump | Gear Pump | | | | | | Motor | See page C160 for electric motor details | | | | | #### **STAUFF Heating Efficiency Curve** #### #### **Heated Unit Hydraulic Schematic** #### **Heated Offline Filter Housings / Complete Filters - Type OLSH** #### Filter Elements - Type SRM #### **Bypass Filters** • Type BPS #### **Product Description** STAUFF BPS Bypass Filter can be used for OEM first fit applications as well as for retro-fitting. The filtration is done in a bypass configuration from the main hydraulic system. The STAUFF BPS Filter Systems are available with one filter housing (BPS-1A, maximum flow 2,1 l/min / .6 US GPM) or with two filter housings (BPS-2A, maximum flow 4,2 l/min / 1.1 US GPM) at a viscosity between 20 ... 160 cSt / 100 ... 750 SUS. The STAUFF Bypass Filter Units are especially designed for mobile applications in hydraulic and/or transmission systems. In the absence of a pumped system, the oil is drawn from the main system by means of a specially designed and integrated flow valve. The amount of oil extracted at any one time is insignificant therefore ensuring that it will not affect the working of the main system. Most commonly used biodegradable oils in the mobile sector are suitable for filtration with STAUFF Filter Elements. STAUFF Systems have been applied on a wide range of mobile hydraulic machinery, cleaning fluids to levels not previously possible with conventional filtration methods, resulting in dramatic increases in component life. Successful applications include: - Excavators - Wheel loaders - Forestry machines - Asphalting machines - Cement mixers - · Aircraft ground support machinery - Agricultural machines BPS - 1A - 30 - H - B BPS - 2A - 30 - H - B # STAUFF #### Bypass Filters • Type BPS #### Dimensions BPS - 1A - 30 - H - B #### Dimensions BPS - 2A - 30 - H - B * recommended space for element change #### Bypass Filters • Type BPS #### **Technical Data BPS** | | BPS - 1A - 30 - H - B | BPS - 2A - 30 - H - B | | | | |--|--|-------------------------|--|--|--| | Number of Filter Housings | 1 | 2 | | | | | | 2,1 l/min | 4,2 l/min | | | | | Nominal Flow | .6 US GPM | 1.1 US GPM | | | | | Max. Differential Pressure | Max. 6,2 | | | | | | wax. Differential Pressure | 90 PSI over the filter element without back pressure | | | | | | May Eluid Tomporaturo | +80 °C | | | | | | Max. Fluid Temperature | +176 °F | | | | | | Max. Housing Pressure | 20 bar | | | | | | Max. Housing Fressure | 290 PSI | | | | | | Range of Viscosity | 20 160 cSt | | | | | | nailye of viscosity | 100 750 SUS | | | | | | Connection Pressure Side | G1/4 | | | | | | Connection Return Line Side | G1/2 | | | | | | Hose Diameter | 3/8 1/2 in (inner diameter) flexible hose | | | | | | Weight | 6 kg | 13 kg | | | | | Weight | 13.2 lbs | 28.7 lbs | | | | | Max. Volume of Tank | 750 I | 1500 | | | | | Max. Volume of fam. | 200 gal | 400 gal | | | | | Dimensions | 402 x 131 x 159 mm | 402 x 282 x 158 mm | | | | | HxWxD | 15.83 x 5.16 x 6.26 in | 15.83 x 11.10 x 6.22 in | | | | | Connection for On-Line Particle
Counter | STAUFF Test (M16 x 2) | | | | | | Drocoura Pango | 12 420 bar | | | | | | Pressure Range | 180 6200 PSI | | | | | #### Bypass Filter Housings / Complete Filters - Type BPS #### Filter Elements - Type SRM # STAUFF #### **Bypass Filters • Type BPS** #### With Standard Foot / Bulk Head Mounting Bracket (Code 1) #### With "Bulk Head Mounting Only" Bracket (Code 2) #### Standard "OLS" Wall Mounting Bracket (Code 3) #### Bypass and Off-Line Filters - Type OLS / BPS #### Off-Line Filter OLS Hydraulic Symbol #### **Bypass Filter BPS Hydraulic Symbol** #### Filter Element SRM-30HB Δp / viscosity - graph (at a flow of 2,1 I/min / .6 US GPM per element) # Flow Characteristics Off-Line Filter OLS with Filter Element SRM-30HB (at maximum viscosity) # Flow Characteristics Bypass Filter BPS with Filter Element SRM-30HB (at maximum viscosity) # STAUFF #### Bypass Lube-Oil Filter • Type BPLS #### **Technical Data** #### Construction ■ BPLS: Bypass Lube-Oil Filter #### Materials Filter housing: Aluminium Sealings: NBR (Buna-N®) FPM (Viton®) #### Port Connection Inlet: G1/4Outlet: G1/4 #### **Maximum Sump Size** ■ 35 I / 9.25 gal #### **Housing Volume** ■ 2,2 liter / .58 gal #### **Burst Pressure Housing** ■ > 20 bar / >290 PSI #### Filter Element - 0,5 micron cellulose element - Glass fibre elements (pleated) - Water absorbing elements #### **Product Description** Maintenance is essential for the efficient functioning of engine equipment. However, it is always a critical decision between the quality of the maintenance and the costs involved. Optimal maintenance efficiency combines maximum achievement of the maintenance goal (protection and prolonged usage life of the object) with minimal use of means (costs). The STAUFF Bypass Filter is unique in that it not only achieves the goal, but saves on costs. The STAUFF Bypass Filter keeps the oil clean, resulting in significant technical, environmental and financial benefits thanks to reduced wear and tear on equipment and machines and prolonged oil life time. STAUFF Systems BPLS Bypass Filters are used as an additional micro filter connected in bypass to the conventional main stream filters on engines (and automatic transmissions.) Most contamination is much smaller than 15 micron in size, but full flow filters generally do not filter below this level. This results in a lot of harmful contamination passing through these filters and remaining in the system. STAUFF Systems Bypass Filters are capable of filtering down as low as 0,5 micron without detriment to the lubrication circuit. (see schematic) Whatever the application, the benefits of the STAUFF Systems Bypass Filters are all based on maintaining a higher quality and cleanliness level of the oil and thereby avoiding the multiple problems that can be caused by fluid contamination. The benefits are many, and can be broken into three categories : #### **Technical benefits** - Less malfunctioning - Greater reliability of operation - Prolonged oil usage life - Reduced down time - · Reduced wear on cylinder linings and pistons - Less bore polishing - · Less formation of black sludge - Improved engine compression - Increased equipment life time #### **Environmental benefits** - Less oil consumption - Therefore less waste oil - Increased life time of additives - Reduction of harmful emissions #### **Financial benefits** - Savings in labour and materials (oil changes) - Reduced costs for repairs and downtime - Reduced waste processing costs #### **Applications** - Construction equipment - Agricultural equipment - Forestry equipment -
Diesel driven welding machines/generators - Port equipment #### **BPLS-Filter Dimensions** #### Bypass Lube Oil Filter • Type BPLS All dimensions in mm / in #### Bypass Lube Oil Filter Housings / Complete Filters • Type BPLS # STAUFF #### Mini Water Vac - Type SMWV #### **Product Description** The Mini Water Vac is a designated oil purification unit which can be applied directly to various types of machine reservoirs. It dehydrates and cleans most types of oils such as lubricating, hydraulic, transformer, and switch oils. The Mini Water Vac is a self-regulating filtration unit which removes particles, gas, and water. The purified oil satisfies the most stringent quality requirements. The Mini Water Vac neither removes or alters oil additives. The water removal process is based on pure vacuum evaporation inside a vacuum chamber at a maximum temperature of $+65\,^{\circ}\mathrm{C}$ / $+149\,^{\circ}\mathrm{F}$. Solid particle removal is achieved through a well proven STAUFF Systems Micro Filter #### **Simple Operation** The Mini Water Vac does not require continuous supervision while operating. Once the unit is connected and commissioned, oil purification is a semi-automatic process. Desired oil temperature can be selected via the integrated heater thermostat. The dehydration and filtering process is fully automatic and is controlled via the PLC. The only manual action required is the emptying the pre-condenser bowl and the waste water container which are equipped with float switches to prevent overflow. #### **Water, Gas and Particle Removal** The Mini Water Vac removes liquid, gas, and solid particle contamination, which are corrosive and contribute to the reduction of machine life. Contamination greatly increases maintenance costs and contribute to breakdowns and total machine failures. The Mini Water Vac offers protection against malfunctions, breakdowns or total failures. The Mini Water Vac also protects the environment by reducing oil consumption and oil disposal. #### **Benefits** - Efficient water, gas and particle removal - Extension of fluid life - Reduces fluid disposal - Minimizes corrosion - Reduced failures and downtime - Reduce operating costs #### **Technical Data** #### Construction ■ SMWV-1A-30: Mini Water Vac Vacuum Dehydration Unit one filter housing #### Materials Filter housing Anodized Aluminium Vacuum chamber Anodized Aluminium Heater chamber Anodized Aluminium #### **Port Connection** Inlet G1 Outlet G1/2 • Online particle counter STAUFF Test (M16x2) #### Max. System Volume ■ 30001/795 gal #### **Recirculating Flow Rate** 90 l/h / 23.8 gal/hr #### Max. Backpressure ■ 1 bar / 14.5 PSI #### Max. Heater Temperature • +65°C / +149°F #### Filter Element • 1 micron inorganic glass fibre element $\beta_1 > 200$ #### **Media Compatibility** ■ Viscosity between 20 ... 500 cSt Max. attainable water content 100 ppm #### Removals ■ 100% of free water, >80% of dissolved water ■ 100% of free gases, >80% of dissolved gases #### Dimensions ■ 1200 x 740 x 450 mm / 47.3 x 29.1 x 17.7 in #### Weight ■ 130 kg / 287 lbs #### **Electrical Data** ■ Voltage 230/400 V AC, 50 Hz 255/460 V AC, 50 Hz Power supplyHeater section2 kW Vacuum section 0,037 kW vacuum pump Max. current 3 Amps #### Process Control PLC unit #### Mini Water Vac - Type SMWV #### **Dimensions SMWV-1A** Dimensions and Order Code All dimensions in mm / in #### Mini Water Vac - Type SMWV 230/400 V AC, 50 Hz, three phases, 1360 r/min 255/460 V AC, 60 Hz, three phases, 1630 r/min Note: Other motors on request, technical data see page C160. 0 # STAUFF #### Filter Elements - Type SRM #### **Product Description** STAUFF Systems distinguish themselves by their high efficiency filter elements which are capable of filtering silt particles down to 0.5 microns. Two types of STAUFF Systems are available. The OLS Series uses an integral motor/pump combination to draw the hydraulic or lubrication fluid from the reservoir, filters it, and returns it to the reservoir. The other type of STAUFF System is the BPS Series which uses system pressure to draw a small oil flow from the system which is then filtered and returned to the reservoir. The success of the STAUFF Off-Line Filtration System is due to the design of the element and housing. The element is constructed of 0,5 micron cellulose media applied with a special wrapping method, providing several hundred layers of filter media. The cellulose fibres also absorb and retain water, which slows down the oxidation process of the fluid. The construction of the housing allows only radial flow through the filter element. This design feature prevents channel forming and subsequent shortcircuiting of the media. The Off-Line design maintains a constant flow and pressure through the filter, which does not allow any particle unloading. These design characteristics enable the STAUFF Filtration System to maintain a rated filtration efficiency of $\beta_2 > 2330$. This allows the user to maintain fluid cleanliness levels which cannot be reached with conventional full flow filtration methods. #### The unique STAUFF Filter The principle of the STAUFF System is based on the unique original filter elements. With a filter fineness of 0,5 micron they have the capacity to remove even the smallest of dirt particles from the oil. The micro filter works as a fine filter through which oil passes radially, from the outside to the inside. The filter elements are made entirely of cellulose and are specially designed for hydraulic and lubrication systems. The use of cellulose as the filtration material has the added benefit that water can be absorbed. Water in oil creates a chemical reaction, which seriously deteriorates the oil. #### **Original Elements** The use of original STAUFF Systems filter elements will result in extreme fluid cleanliness and low water contamination levels in the fluid. Through a carefully monitored quality control process excellent pressure drop curves, filter efficiency and dirt-hold capacity are ensured. #### **Cellulose Elements** The STAUFF Systems cellulose filter elements are unique in their design. They consist of several hundred layers of long fiber celulose which are wound on a perforated center tube. The micro filter element works as a fine filter through which oil passes radially, from the outside to the inside, trapping solid particles throughout all the layers of cellulose. The long fiber cellulose is also capable of absorbing water, adding the benefit of moisture removal from the oil. STAUFF Systems cellulose elements are extremely efficient and have a large dirt-hold capacity. The cellulose elements are produced in various sizes to suit all STAUFF Systems filter housings. The STAUFF Systems cellulose elements compatible with most commonly used hydraulic and lubricating fluids, including biodegradable fluids. #### **Glass fibre Elements** STAUFF Systems offers a range of glass fibre filter elements in a fineness of 1, 3, 5, 10 or 20 micron. The micro filter element works as a fine filter through which oil passes radially, from the outside to the inside. STAUFF Systems glass fibre filter elements (conventional pleated construction) are extremely efficient and have a large dirt-hold capacity. The glass fiber elements are suited for all STAUFF Systems filter housing (except the size 20 housing) and are compatible with most commonly used hydraulic and lubricating fluids, including biodegradable fluids. The glass fibre elements are particularly suited for gearbox applications where high viscosity fluids limit the use of the cellulose elements. #### **Water Sorb Filter Inserts** STAUFF Systems offers a specifically designed water sorb combination filter element: water absorbing and particle retention. This pleated filter element with a fineness of 5 micron has layers of polymers in between layers of glass fibre, creating a unique media to remove both water and solid particles from the fluid. #### **Characteristics** - \blacksquare Continuous quality with stable flow/ $\!\Delta p$ performance - Extremely fine filters (0.5 micron) - Large filtration surface - High water absorption capacity - Additives are not removed - Large dirt collection capacity - Extends oil usage life - Extends life cycle main stream filters #### **Applications** The original filter elements are used in combination with STAUFF Systems filter housings in an endless range of industries. Some Examples are: - Plastic industry - Steel industry - Concrete and cement industry - Petrochemical industry - Maritime industry - Paper industry - Forestry industry #### Off-Line and Bypass Filters Replacement Elements • Type SRM #### **Filter Element Technical Data** | Element Model | SRM-30HB | SRM-30E01B | SRM-30E03B | SRM-30WAB | | | | | |-------------------------------------|--------------------------------------|-------------------|-------------------|-------------------------|--|--|--|--| | Filter Material | Cellulose | Glass fibre | Glass fibre | Glass fibre and Polymer | | | | | | Filtration Efficiency | $\beta_5 \ge 200 / \beta_2 \ge 2331$ | $\beta_1 \ge 200$ | $\beta_3 \ge 200$ | $B_5 \ge 200$ | | | | | | Water Absorption Capacity | 150 ml | N/A | N/A | 350 ml | | | | | | water Absorption Capacity | 5 oz | IVA | IVA | 11.8 oz | | | | | | Nominal Flow per Element | 2,1 I/min | 2,1 I/min | 2,1 I/min | 2,1 I/min | | | | | | Nominal Flow per Element | .6 GPM | .6 GPM | .6 GPM | .6 GPM | | | | | | Max. Viscosity at Nominal Flow Rate | 180 cSt | 800 cSt | | | | | | | | Max. Oil Temperature | +80 °C | +80 °C | | | | | | | | wax. Oii Temperature | +176 °F | | | | | | | | | Longht of Florent | 300 mm | | | | | | | | | Lenght of Element | 11.8 in | | | | | | | | | Sealing Material (Standard) | NBR (Buna-N®) and Silicone Rubber | NBR (Buna-N®) | NBR (Buna-N®) | NBR (Buna-N®) | | | | | | Other Sealing Material | Consult STAUFF | | | | | | | | | Fluid Compatibility: | | | | | | | | | | Mineral Oils | | | | | | | | | | H, HI, HLP, HVLP | OK | OK |
OK | OK | | | | | | Biodegradable Oils | | | | | | | | | | HEPG Polethyleneglycol | Consult STAUFF | | | | | | | | | HEES Synthetic ester | OK | OK | OK | OK | | | | | | HETG Vegetable seed oil | Consult STAUFF | | | | | | | | | Fire Inhibiting Fluids | | | | | | | | | | HFA emulsions | NO | OK | OK | NO | | | | | | HFC glycol/water solution | NO | OK | OK | NO | | | | | | HFD fluids no water content | Consult STAUFF | | | | | | | | | Approximate Weight | 0,8 kg | 1,25 kg | 1,25 kg | 1,25 kg | | | | | | Approximate Weight | 1.8 lb | 2.8 lb | 2.8 lb | 2.8 lb | | | | | #### Filter Element SRM-30HB Δp / viscosity - graph (at a flow of 2,1 I/min / .6 US GPM per element) #### Filter Element SRM-30E03B △P / Viscosity-Graph #### Filter Element SRM-30E01B ΔP / Viscosity-Graph #### Filter Element SRM-30WAB ΔP / Viscosity-Graph #### Portable Filter Cart - Type SPFC #### **Product Description** The STAUFF Portable Filter Cart (SPFC) is a very complete and practical unit capable of off-line filtration, filling or emptying reservoirs (if needed via 125 µm suction filter) or any application requiring the transfer or filtration of hydraulic oils. Multi stage filtration can be applied to extend element lifetime. The SPFC is available with a variety of Spin-on elements for quick and easy element replacement as well with various pump/motor options. All components are mounted together on a sturdy frame guaranteeing a long lifetime. #### **Technical Data** - 38 I/min / 10 US GPM gear pump - Electric motor single phase or three phase 1 HP - On/Off button with 3,05 m / 10 ft power cord - · Heavy duty welded frame with drip pan and tool tray - Suction strainer 100 mesh Spin on - 3,05 m / 10 ft spiral reinforced PVC hoses with wands - 3-way ball valve to by-pass filters - Weight: 86 kg / 190 lbs. #### **Options** - Single or dual stage filtration - 3, 6, 12 or 25 µm ßx= 200 elements - Water absorption elements - Drum cart - Smart cart with laser particle monitor contamination indicator Note: For special applications (fluids, temperature, etc.) please contact your local STAUFF distributor. #### Dimensions SPFC...DL Drum Lift #### Portable Filter Cart - Smart Cart - Type SPFC #### **Product Description** The Stauff Smart Cart incorporates a laser particle monitor system to the standard SPFC filter cart. With this system the user can set the required ISO codes on the LPM to indicate when the SPFC has filtered the system to the specified cleanliness level. The system will indicate this to the user with an indicator light. #### **Technical Data** - LIM* controlled with indicator light - Laser Particle Monitor (LPM)* continuously monitors contamination level - Toch screen controlled with programmable automatic shutdown - * See Diagtronics section of this catalogue for LPM and LIM details. #### **Options** • All other options included with the standard SPFC unit #### **Dimensions SPFC....SC Smart Cart** C184 www.stauff.com Dimensions in mm (inch) #### Portable Filter Cart- Smart Cart - Type SPFC #### **Technical Data** The Smart Cart SCL can be programmed with desired ISO code cleanliness for up to 4 separate channels (4 μ m, 6 μ m, 8 μ m, and 21 μ m). When the oil reaches the programmed ISO code on any channel it will ALARM. When the smart cart alarms it will trigger the GREEN light letting the operator know the current reservoir is complete and they can move on to the next piece of equipment. The Smart Cart SCP offers more versatility. It has an LCD touch screen that displays a graph showing the trending history of the ISO codes as well as data logging capabilities. It can be programmed for low (clean) and high (dirty) ISO code alarms. The unit can also display the status of the LPM giving information such as sample time, Laser Temp, and alarm status. SPFC...SCL LIM Controlled Technical Data #### SPFC...SCP Touch Screen Interface Modules Home Screen History Graph Alarm Set-up System Status #### Portable Filter Cart • Type SPFC | 5 | Stage 2 Filter Element | | |---|----------------------------------|--------| | | Without filter element | 0000 | | | Synthetic 3 µm ß200 | 6704 | | | Synthetic 6 µm ß200 | 6707 | | | Synthetic 12 µm ß200 | 6731 | | | Synthetic 25 µm ß200 | 6726 | | | Paper 10 µm | 6721 | | | Paper 25 µm | 6711 | | | Water absorbing 10 µm | 6721-W | | | Stainless Steel wire mesh 144 µm | 6791 | | | | | | 6 | Sealing Material | | | | NBR (Buna-N®) (standard option) | В | | | FPM (Viton®) | V | | | | | | 7 | Contamination Indicator | | | | Without indicator | 0 | Visual indicator (standard option) | 7 | 8 9 | | |---|---|-----| | 8 | Electric Motor Voltage | | | | 220 V AC @ 60 Hz - three phases | Α | | | 110 V AC @ 50 Hz - single phase | В | | 1 | 110 V AC @ 60 Hz - single phase (standard option) | C | | 1 | 230 V AC @ 50 Hz - single phase | D | | 1 | 230 V AC @ 60 Hz - single phase | E | | | 400 V AC @ 50 Hz - three phases | F | | 1 | 400 V AC @ 60 Hz - three phases | G | | | 440 V AC @ 50 Hz - three phases | Н | | | 440 V AC @ 60 Hz - three phases | F | | | Special voltages on request | X | | 9 | Special Configuration | | | 1 | Drum cart | DL | | | Smart cart - LIM controlled with light | SCL | | | Smart cart with touch screen and automatic shutdown, PLC controlled | SCP | #### **Compact Portable Filter Cart - Type SCFC** **Technical Data** #### **Product Description** The STAUFF Compact Filter Cart (SCFC) is a very compact, light and handy filter cart, offering excellent service for maintenance departments. The carts assembled with a single or double Spin-on head allow the use of various elements from 3 µm absolute to 125 µm wire mesh. The SCFC can be used for off line filtration or as a transfer unit. #### **Technical Data** - Flow 19 I/min / 5 US GPM up to 38 I/min / 10 US GPM - Electric motor single phase or three phases 1 HP - Thermal overload relays - Welded frame with tool tray epoxy coated - Compact suction strainer - Special flexible hoses reinforced with internal spiral, length 3,05 m / 10 ft - Filter head with by-pass valve integrated - Visual clogging indicator - Weight: 53 kg / 177 lbs. #### **Options** - Single or dual stage filtration - Gear pump or vane pump - Electric motor standard: IEC or CSA/NEMA - \blacksquare Filter elements: 10 or 25 μm (in paper), 3, 6, 12 or 25 μm ß200 (Inorganic Glass Fiber) or 125 µm (Stainless wire mesh) - Water absorption filter elements Note: For special applications (fluids, temperature, etc.) please contact your local STAUFF distributor. #### **Dimensions SCFC** #### **Compact Portable Filter Cart** • Type SCFC C188 www.stauff.com Dimensions in mm (inch) #### **STAUFF Mobile Filter Systems** Overview #### **Product Description** Mobile Filter Systems from STAUFF already covered a wide spectrum of use: On the one hand compact and versatile, on the other hand designed for long-lasting use and highest nominal flow rates, the support the preventive maintenance of hydraulic and lubrication systems, thus providing extended maintenance intervals and helping to reduce operating costs within shortest payback periods. To cover region specific requirements STAUFF has a large range of different Mobile Filter Systems. #### STAUFF Europe: STAUFF Mobile Filter System SMFS-P-015 - · High-quality gear pump - Nominal flow rate up to 15 I/min / 4 US GPM - 2 motor versions: 230 V 50 Hz or 400 V 50 Hz - Micron rating available from 3 ... 125 μm - Hand-held unit - Weight: approx. 23 kg / 51 lbs #### STAUFF Europe: STAUFF Mobile Filter System SMFS-U-030 - · High-quality gear pump - Nominal flow rate up to 30 I/min / 8 US GPM - 2 motor versions: 230 V 50 Hz or 400 V 50 Hz - Micron rating available from 3 ... 125 μm - Weight: approx. 46 kg / 101 lbs #### STAUFF Europe: STAUFF Mobile Filter System SMFS-U-060 / 110 #### · High-quality gear pump - Nominal flow rate up to 60 l/min / 15 US GPM or 110 I/min / 30 US GPM - Micron rating available from 3 ... 25 μm - Weight: approx. 87 kg / 192 lbs #### STAUFF Australia: STAUFF Portable Filter Cart SPFC - · High-quality gear pump - Nominal flow rate up to 23 l/min / 6 US GPM - Magnetic core pre-filtration - Micron rating 10 μm - Weight: approx. 53 kg / 117 lbs