

Stepper Motor Linear Actuators

Pre-engineered motorized lead screw assemblies and actuators for precision applications

Stepper Motor Linear Actuator Assemblies

Combining cutting-edge motor and lead screw technologies

Thomson offers three basic configurations — rotating screw (MLS), rotating nut (MLN) and actuator (MLA). The open architecture rotating screw and rotating nut motorized lead screws suit applications where external guidance is present or a high level of design flexibility is required, while the closed assembly of the motorized lead screw actuator is ideal to further simplify the design process and remove requirements for external guidance.

Technology Overview

Rotating screw assemblies (MLS) actuate by having the motor rotate a lead screw and translate a load that is attached to the lead nut. Rotating nut assemblies (MLN) actuate by rotating a nut within the motor body. Motion is achieved by constraining the motor and translating a load attached to the lead screw or constraining the lead screw and translating a load attached to the motor.

Rotating Screw Configuration MLS

The rotating screw design, which is ideal for rapid prototyping, features our patented Taper-Lock design to connect the lead screw to the motor shaft. It is best suited for applications where a high level of modularity or

customization is required. Users have the freedom to configure an assembly from a range of lead screw, lead nut and motor options as needed for their applications.

Rotating Nut Configuration

MLN

The rotating nut design features our patented integration of a lead nut into the motor rotor to maximize screw diameter, which increases load capacity. It is ideally suited for applications where no visible rotation is desired or where it is necessary to translate a load on either side of the motor.

2

Motorized Lead Screws

Thomson motorized lead screws combine a hybrid stepper motor and a precision lead screw together in one compact envelope. Patented Taper-Lock technology allows quick decoupling and secure, properly aligned connections. This combination offers several advantages over a traditional solution.

Improved Efficiency

Thomson provides a more efficient motorized solution to reduce power consumption, improve operating battery life, and decrease motor footprint. With this improved efficiency, an increase in system load performance or a reduction in power consumption can be expected — all while having a lower cost of ownership.

Increased Torque Density

Thomson motorized lead screws offer increased torque density over alternative solutions. By optimizing the motor performance and matching this with the ideal lead screw and nut design, Thomson has been able to increase the load capacity by up to 30% while maintaining the same motor footprint.

The Taper-Lock Advantage

The robust design of the Taper-Lock provides a secure, self-aligning connection between the lead screw and stepper motor.

Reduced Noise

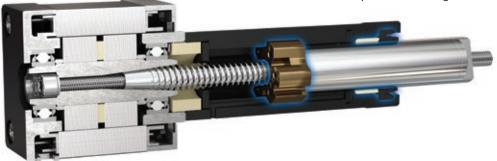
Thomson can optimize your motor configuration and windings to limit motor harmonics and reduce motor noise at your application operating points.

Motorized Lead Screw Actuators

Thomson motorized lead screws are also available in an actuator configuration (MLA). The actuator is a fully housed solution in which the motion is taken care of for you — simply determine stroke length, linear travel per step or revolution (lead), and precision level to select an appropriate MLA. The actuator configuration offers a complete housing and integrates easily into your assembly with a similar range of end mounting and connection options as the rest of the motorized lead screw family.

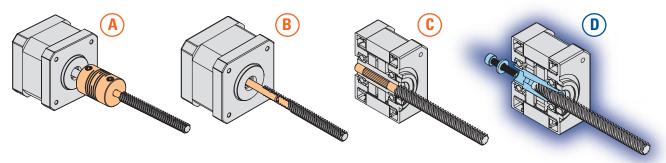
Built-in Anti-Rotation

Our actuator configuration includes anti-rotation as standard with every product, eliminating the need for external guidance.



Actuator configurations are able to withstand some side and moment loading due to the bushing design included inside the assembly. Depending on load, speed and motion requirements, MLA assemblies can withstand a side load of up to 10% of axial capacity of the motor. For optimal performance, side and moment loads on MLA configurations should be minimized and avoided in the fully extended position.

Actuator Configuration MLA


The actuator is a fully housed motorized lead screw with a rotating screw configuration and your choice of end machining. This version simplifies your design process by enabling you to select a product based on linear travel per motor rotation and by including anti-rotation as standard, with no external requirements for guidance.

Thomson Advantage

The Thomson Taper-Lock

Fixing the motor to the lead screw usually requires a coupling assembly (A), a counter-bore press fit (B) or a hollow shaft press fit (C). The assembly process may also entail the use of adhesives or welding, but the bottom line is that all these solutions make it difficult or impossible to change lead screws or perform maintenance. Thomson has solved this issue with our patented Taper-Lock coupling (D) that requires only a single retention fastener.

Coupling assembly

- space demanding
- requires more external components
- · reduced stroke
- may reduce accuracy

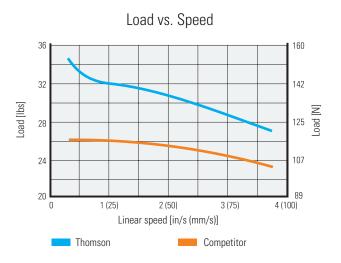
Counter-bore press fit

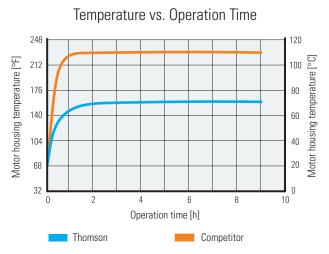
- poor lead screw alignment
- lead screw prone to slipping and decoupling
- reduced stroke
- difficult to service lead screw

Hollow shaft press fit

- fewer compatible lead screws
- poor lead screw alignment
- lead screw prone to slipping and decoupling
- difficult to service lead screw

Thomson Taper-Lock


- increased lead screw configurability
- precise lead screw alignment
- increased stroke length
- compact form factor

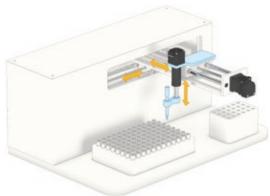

Thrust Force Comparison

Thomson optimized motors will result in up to a 30% increase in thrust over the competition. That means you will get a smaller and more efficient solution with the same power output.

Temperature Rise Comparison

Thomson offers more efficient motors where more torque can be output with less heat loss — meaning that our motors can be operated with higher power input while maintaining lower heat generation.

The curves where generated with a 1.5 A / 2.33 V, 1.8° NEMA 17 single stack, rotating screw stepper motor. Test ran with a 0.9°, 24 VDC chopper drive and a 4-2516 lead screw at an ambient temperature of 20 °C.

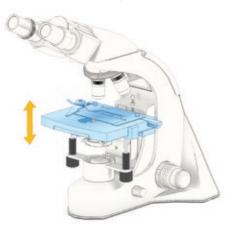

Application Examples

These common applications show that stepper motor linear actuators reduce the total number of components in your design, while minimizing space requirements, and making assembly and maintenance quicker and easier. Examples are shown for all three configurations - rotating screw (MLS), rotating nut (MLN) and actuator (MLA).

Pipetting ML

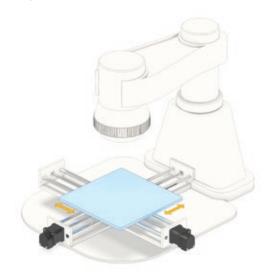
Tiny, precise, repeatable vertical motion is essential for accurate pipetting. Choose MLA to simplify your z-axis and MLS for precise, horizontal motion in pipetting applications.

Fluid Pumps



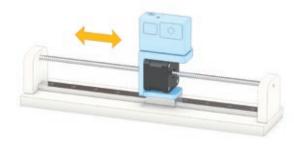
Regardless of the mounting configuration, a stepper motor linear actuator can increase pump pressure, reduce equipment footprint and more accurately dispense fluid.

Plate Vertical Postioning



Actuator assemblies are self contained and ideal for simplified, leveling applications where small radial or moment loads may be present.

XY Stages



Stepper motor linear actuators optimize XY stage designs with their compactness and power.

Horizontal Positioning

Cameras and other measurement devices need to be in just the right place at just the right time. MLN delivers reliable horizontal positioning and length selections to get your horizontal positioning job done right.

Robotic Gripper

MLN configurations excel in gripping applications, rotating and positioning gripper heads and attachments with ease.

3D Printing

Utilizing a stepper motor linear actuator on a 3D printer can eliminate the need for couplings, bearings and supports while increasing stroke length and print volume.

Monitor Tilting

Angle adjustment is made simple when the MLA configuration is applied in monitor and plate tilting applications.

Ordering Keys

MLS/MLN Ordering Key 2 5 10 11 12 13 14 **MLS** P 2 17 25 0250 06000 **B2** 00 RS 15 1. Series Linear travel/rev³ 10. Front-end machining⁵ MLS = Rotating screw MLN = Rotating nut 0750 = 0.750 in 0800 = 0.800 in 0031 = 0.031 in 0040 = 0.040 in A0 = No machining Plain journal ends: 0050 = 0.050 in 1000 = 1.000 in B1 = Ø 2.50 mm h7 B2 = Ø 4.00 mm h7 B3 = Ø 5.00 mm h7 2. Motor size 0063 = 0.063 in 1200 = 1.200 in 08 = NEMA 08 motor used through April 2022 0079 = 0.079 in 1500 = 1.500 in (MLS only) 0083 = 0.083 in 010 = 1.0 mmB4 = \emptyset 6.00 mm h7 BX = Custom journal end machining² X8 = NEMA 08 motor used after April 2022 0100 = 0.100 in 0118 = 0.118 in 020 = 2.0 mm(MLS only) 11 = NEMA 11 0.30 = 3.0 mmMale threaded ends: 0125 = 0.125 in 0157 = 0.157 in 040 = 4.0 mm14 = NEMA 14 17 = NEMA 17 C1 = #4-40 x 0.250 in 050 = 5.0 mmC2 = #8-32 x 0.250 in C3 = #10-24 x 0.375 in C4 = 1/4-20 x 0.500 in C5 = M2.5x0.45 x 6.35 mm 0167 = 0.167 in 060 = 6.0 mm23 = NEMA 23 0192 = 0.192 in 080 = 8.0 mm0200 = 0.200 in 100 = 10.0 mm3. Motor stack¹ 0250 = 0.250 in 0300 = 0.300 in 120 = 12.0 mm 150 = 15.0 mm C6 = M4x0.7 x 6.35 mm C7 = M5x0.8 x 9.53 mm A = Single B = Double 0333 = 0.333 in 160 = 16.0 mm X = Custom single² Y = Custom double² $C8 = M6x1.0 \times 12.70 \text{ mm}$ 0375 = 0.375 in 180 = 18.0 mm CX = Custom threaded end1 0400 = 0.400 in 0500 = 0.500 in 200 = 20.0 mmJournal with snap ring groove: 250 = 25.0 mm4. Motor current rating (in 0.1 amps)¹ $D1 = \emptyset$ 2.50 mm and ring groove 05 = 0.5 amps08 = 0.8 amps $D2 = \emptyset$ 4.00 mm and ring groove 7. Accuracy grade S=Standard~0.010 in/ft (250 $\mu m/300$ mm) P=Precision~0.003 in/ft (75 $\mu m/300$ mm) $D3 = \emptyset$ 5.00 mm and ring groove 10 = 1.0 ampsD4 = \emptyset 6.00 mm and ring groove DX = Custom journal with snap ring groove¹ 13 = 1.3 amps15 = 1.5 amps8. Lead screw overall length^{1,2} 19 = 1.9 amps0X000 = X.000 in (ex: 06000 = 6.000 in) XXX00 = XXX.00 mm (when metric diameter 11. Rear-end machining⁵ 30 = 3.0 amps39 = 3.9 ampsMLN same options as front-end MLS is always 00 is selected, ex: 15000 = 150.00 mm) XX = Other custom end machining² Screw diameter³ 9. Lead screw coating N = No coating on lead screw M04 = 4.0 mm18 = 0.188 in 12. Nut. MLN is always XX^6 XX = No nut or MLN 25 = 0.250 in M06 = 6.0 mmT = PTFE-coated lead screw4 31 = 0.313 in M08 = 8.0 mmRS = Flange mount, acetal material (RSF Series nuts) AF = Flange mount, alternative anti-backlash (AFT Series nuts) BN = Threaded mount, bronze material (BN Series nuts) 37 = 0.375 in M10 = 10.0 mm43 = 0.438 in 50 = 0.500 in M12 = 12.0 mmMT = Flange mount, alternative to RS nut (MTS Series nuts) RH = Flange mount, peek material (RSFH Series nuts) SB = Thread mount, alternative anti-backlash (SNAB Series nuts) SN = Threaded mount, acetal material (SN Series nuts) XF = Triangular flange, anti-backlash (XC Series nuts) XT = Threaded mount, anti-backlash (XC Series nuts) 1. For available standard motors, see pages 17-32. 2. To be assigned by Thomson only. 13. Nut size. MLN is always X⁶ X = No nut or MLN 3. For compatible lead screws, see pages 12-13. 4. PTFE coating not available for MLN configurations or with RH (RSFH) lead nuts. 1 = 0.188 in and 4 mm dia screws⁷ For compatible end-machining options, see page 15. 2 = 0.250 in and 6 mm dia screws^{8,9} 6. RS nut standard on MLS. For optional nut compatibility, see pages 36-37. 3 = 0.313 in, 0.375 in, 8 and 10 mm screws 7. XF1 and XT1 nut also compatible for 0.250 in and 6 mm diameter lead screws 5 = 0.438 in, 0.50 in and 12 mm screws 8. SN2 nut used for 0.188 in diameter lead screws and SB2 nut used for 0.188 in and 4 mm 14. Custom designation² 9. MT2 nut used for 0.188 in, 4 mm, 0.250 in, 6 mm, 0.313 in, and 8 mm diameter lead screws (blank) = Standard configuration 001-999 = Custom configuration

MLS Example:

MLS11A05-180100S04000T-A000-RS1

MLS = Rotating screw (S) configuration

11A05 = NEMA 11 (11), single stack (A), 0.51 amp (05) motor 1801000S04000T = 0.1875 in (18) diameter x 0.100 in (0100) lead screw, standard grade accuracy (S) at 4.000 in overall length (04000) with PTFE screw coating (T) A000 = No (A0) and MLS default N/A (00)

end-machining on screw RS1 = RSF1800 lead nut MLS

MLN Example:

MLN17B15-M06120P15000N-A0C6-XXX MLN = Rotating nut (N) configuration 17B15 = NEMA 17 (17), double stack (B), 1.50 amp (15) motor

MLN

M06120P15000N = 6 mm (M06) diameter x 12.0 mm (120) lead screw, precision grade accuracy (P) at 150 mm overall length (15000) with no screw coating (N) A0C6 = No (A0) and M4x0.7 threaded end x 6.35 mm length (C6) end-machining on screw XXX = no nut (required for MLN / rotating nut

assemblies)

Please visit thomsonlinear.com/smla to access our stepper motor linear actuator selector and part number generator.

MLA Ordering Key 9 10 3 5 6 **MLA** A 15 0250 P 0150 **S02** 17 C5 1. Series MLA = Motorized lead screw actuator **5. Linear travel/rev (lead in 0.001 inch)**³ 0031 = 0.031 in 0236 = 0.236 in 8. End-mounting⁴ ML08: 0236 = 0.236 in (6 mm) 0039 = 0.039 in (1 mm) $C1 = #4-40 \times 0.236$ in male 0250 = 0.250 in 2. Motor size¹ 08 = NEMA 08 motor used through April 2022 X8 = NEMA 08 motor used after April 2022 0040 = 0.040 in $E1 = #4-40 \times 0.236$ in female 0300 = 0.300 in 0050 = 0.050 in 0315 = 0.315 in (8 mm) $C4 = M3x0.5 \times 5.99 \text{ mm male}$ 0063 = 0.063 in 0333 = 0.333 in $E4 = M3x0.5 \times 5.99 \text{ mm female}$ 11 = NEMA 11 0079 = 0.079 in (2 mm) 0375 = 0.375 in 14 = NEMA 14 0083 = 0.083 in 0100 = 0.100 in 0118 = 0.118 in (3 mm) 0394 = 0.394 in (10 mm) C2 = #8-32 x 0.265 in male E2 = #8-32 x 0.265 in female C5 = M4x0.7 x 6.73 mm male 17 = NEMA 17 0400 = 0.400 in23 = NEMA 23 0472 = 0.472 in (12 mm) 0500 = 0.500 in 0125 = 0.125 in 3. Motor stack1 $E5 = M4x0.7 \times 6.73 \text{ mm female}$ 0157 = 0.157 in (4 mm) 0709 = 0.709 in (18 mm) A = Single B = Double 0167 = 0.167 in 0750 = 0.750 inVILZ3. C3 = 1/4-20 x 0.500 in male E3 = 1/4-20 x 0.500 in female C6 = M6x1.0 x 12.70 mm male E6 = M6x1.0 x 12.70 mm female 0787 = 0.787 in (20 mm) 0192 = 0.192 in X = Custom single² Y = Custom double² 0197 = 0.197 in (5 mm) 0200 = 0.200 in 1000 = 1.000 in1200 = 1.200 in 4. Motor Current Rating (in 0.1 amps)1 **6. Accuracy Grade** S = Standard 0.010 in/ft (250 μm/300 mm) P = Precision 0.003 in/ft (75 μm/300 mm) 05 = 0.5 amps9. Nut 08 = 0.8 ampsS01 = For ML08 S02 = For ML1x 10 = 1.0 amps13 = 1.3 amps7. Stroke length (in 0.01 inch) S03 = For ML2315 = 1.5 amps 19 = 1.9 amps 30 = 3.0 amps 0XXX = X.XX in stroke length (always in inch) (ex: 0150 = 1.50 in stroke. Max stroke length = 1.50 10. Custom designation² (blank) = Standard configuration 001-999 = Custom configuration in for MLA08 and 2.50 in for all others) 39 = 3.9 amps1. For available standard motors, see pages 17-32. 2. To be assigned by Thomson only. 3. For compatible linear travel/rev, see pages 12-13. 4. For more details on mounting options, see page 16.

MLA Example:

MLA14A08-0472S0175-E5-S02

MLA = Actuator (A) configuration

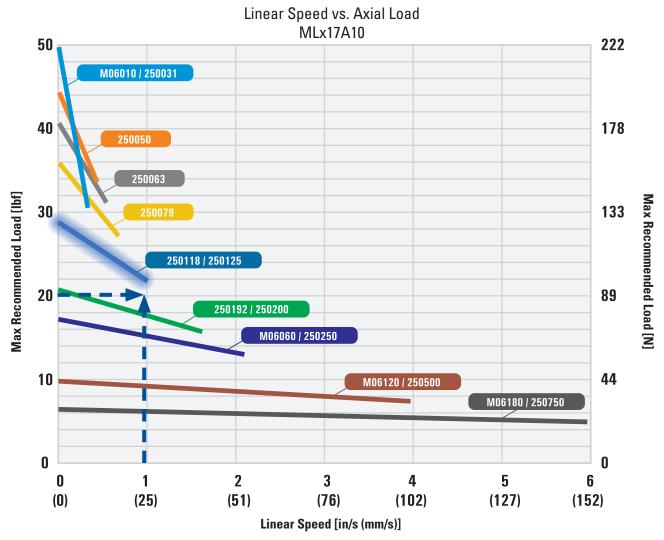
14A08 = NEMA 14 (14), single stack (A), 0.88 amp (08) motor

0472S0175 = 0.472 in lead (0472), standard grade accuracy (S) at 1.75 in stroke (0175)

E5 = Standard M4x0.7 female threaded end

S02 = Standard nut for size 11, 14, and 17 configurations

Please visit www.thomsonlinear.com/smla to access our stepper motor linear actuator selector and part number generator.

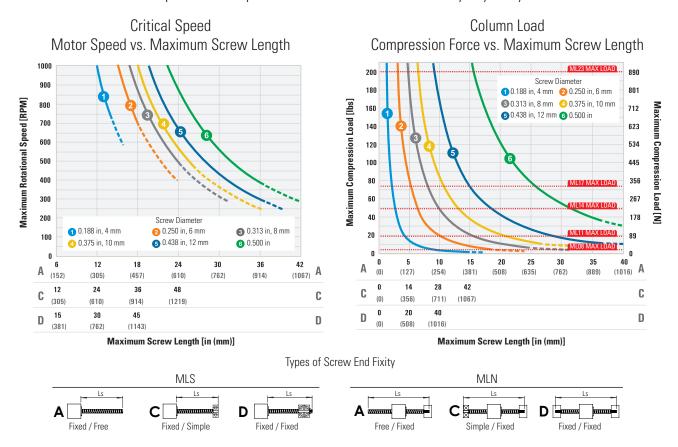


Sizing and Selection Guidelines

How to Select Motor and Lead Screw

For a basic sizing determination, use the motor performance charts throughout the brochure to select the appropriate lead screw based on your load and speed requirements.

Example: Required Force = 20 lbf (89 N) Required Speed = 1 in/s (25 mm/s)


Given the force and speed requirements of 20 lbf and 1 in/s, respectively, the ideal screw is a 250118 or 250125 with this motor.

Note: Simplified performance diagrams are theoretical only and assume ideal conditions with a 24 VDC power supply, standard material lead nut and a moderate length, non-lubricated lead screw. Higher loads and speeds can be achieved. For more detailed performance plots and sizing tools, please visit www.thomsonlinear.com/en/products/motorized-lead-screws.

Sizing and Selection Guidelines

How to Determine Maximum Permissible Screw Length

For MLS and MLN configurations, in order to determine the maximum possible lead screw length for your stepper motor linear actuator assembly, the following charts can be used. These charts take in to consideration the maximum rotational speed and compression load as well as the end fixity of your system.

1. Determine Maximum Motor Speed

Calculate what the maximum motor speed will be for your specific application.

2. Decide Type of Screw End Fixity

There are three basic types of end fixity (A, C and D). The maximum screw length (Ls) for a given motor speed, unit size and screw diameter will vary depending on the selection. For rotating screw assemblies, the end of the lead screw attached to the motor is considered fixed.

3. Check Critical Screw Speed

Check Critical Speed diagram for your maximum speed, lead screw diameter and end fixity to determine the maximum permissible screw length for your application.

4. Check Column Loading

Another limiting factor for the screw length is how sensitive it is to column loading and how likely it is to buckle under a compression load. Check the Column Load diagram to see that your load and desired maximum screw length are compatible with regards to the unit size, lead screw diameter and end fixity being used.

Lead Screw Sizes

Inch Lead	Screw	S	S = Rotati	ng Scr	ew (ML	.S), N = I	Rotatin	g Nut (I	MLN), A	A = Actu	ator (N	ЛLA)
							Motor					
Linear Travel /	1 15. 1	Lead	MLx08, MLxX8	ML	x11	ML	x14, MLx	17		MLx	23	
Full Step [μ in.]	Lead [in.]	Designator			Diameter	Designator	r [hundred	dths of in.	diameter]		
			18	18	25	25	31	37	31	37	43	50
0.063 ²	0.013	0013			S,A ^{1,3}	S,N,A ^{1,3}	S ^{1,3}	S ^{1,3}	S,N ^{1,3}	S,N,A ^{1,3}		S ^{1,3}
0.125 ²	0.025	0025			S,A ^{1.3}	S,N,A ^{1,3}		S ¹		S,N,A ¹		S ^{1,3}
0.157 ²	0.031	0031			S,A	S,N,A		S ¹		S,N,A ¹		
0.165 ²	0.033	0033										S ^{1,3}
0.179 ²	0.036	0036			S,A ^{1,3}	S,N,A ^{1,3}						
0.200 ²	0.040	0040						S ¹		S,N,A ¹		
0.209 ²	0.042	0042			S,A ^{1,3}	S,N,A ^{1,3}	S ^{1,3}	S ^{1,3}	S,N ^{1,3}	S,N,A ^{1,3}		
0.250 ²	0.050	0050	S,A	S,N	S,A ¹	S,N,A ¹		S ¹		S,N,A ¹	S ^{1,3}	S ^{1,3}
0.313 ²	0.063	0063			S,A	S,N,A		S		S,N,A		S ¹
0.394	0.0794	0079			S,A ¹	S,N,A ¹		S ¹		S,N,A ¹		
0.4172	0.083	0083					S	S ¹	S,N	S,N,A ¹		
0.500	0.100	0100	S,A	S,N				S		S,N,A		S ¹
0.591	0.1184	0118			S,A ¹	S,N,A ¹						
0.625	0.125	0125	S,A ¹	S,N ¹	S,A	S,N,A		S ¹		S,N,A ¹	S ¹	
0.787	0.1574	0157			S,A ¹	S,N,A ¹						
0.833	0.167	0167					S	S	S,N	S,N,A		
0.960	0.192	0192			S,A ¹	S,N,A ¹						
1.000	0.200	0200	S,A	S,N	S,A ¹	S,N,A ¹		S ¹		S,N,A ¹		S ¹
1.250	0.250	0250			S,A	S,N,A	S	S	S,N	S,N,A	S ¹	S ¹
1.500	0.300	0300						S ¹		S,N,A ¹		
1.665	0.333	0333	S,A ^{1,3}	S,N ^{1,3}								
1.875	0.375	0375	S,A ^{1,3}	S,N ^{1,3}				S ¹		S,N,A ¹		
2.000	0.400	0400	S,A	S,N								
2.500	0.500	0500	S,A ^{1,3}	S ^{1,3}	S,A	S,N,A	S	S	S,N	S,N,A	S ¹	S ¹
3.750	0.750	0750			S,A ^{1,3}	S,N,A ^{1,3}		S ^{1,3}		S,N,A ^{1,3}		
4.000	0.800	0800										S ^{1,3}
5.000	1.000	1000					S^3	S_3	S,N ³	S,N,A ³		S ^{1,3}
6.000	1.200	1200						S ^{1,3}		S,N,A ^{1,3}		
7.500	1.500	1500										S ^{1,3}

Some leads may not be available in high-performance nut material or some anti-backlash nuts. Contact Thomson for more detail.
 Fine-pitched lead screws may have substantially lower load capacities compared to traditional lead screws.
 Lead screw not available in precision grade accuracy (P).
 Hybrid threadform consisting of diameter in [in] and lead in [mm] (example: 0.25 in x 2 mm).

Note: Not all available lead screws are shown above. Please contact Thomson for more details.

Metric Le	ad Sci	rews	S = Rotating	g Screw	/ (MLS),	N = Rot	ating Nu	ıt (MLN), A = A	ctuator (MLA)
						М	otor				
Linear Travel /	Lead	Lead	MLx08, MLxX8	ML	x11	N	ILx14, ML1	17		MLx23	
Full Step [µm]	[mm]	Designator ²				Diameter	Designato	r			
			M04	M04	M06	M06	M08	M10	M08	M10	M12
5	1.0	010 (0039)	S, A	S,N	S,A	S,N,A					
10	2.0	020 (0079)					S	S	S,N	S,N,A	S ¹
15	3.0	030 (0118)						S		S,N,A	S ¹
20	4.0	040 (0157)	S, A	S,N			S		S,N		S ¹
25	5.0	050 (0197)						S		S,N,A	
30	6.0	060 (0236)			S,A	S,N,A		S ¹		S,N,A ¹	S ¹
40	8.0	080 (0315)	S, A ³	S,N ³			S		S,N		
50	10.0	100 (0394)						S		S,N,A	S ¹
60	12.0	120 (0472)			S,A	S,N,A	S	S ¹	S,N	S,N,A ¹	
75	15.0	150 (0591)									S ¹
80	16.0	160 (0630)									S ¹
90	18.0	180 (0709)			S,A ^{1,3}	S,N,A ^{1,3}					
100	20.0	200 (0787)					S_3	S	S,N ³	S,N,A	
125	25.0	250 (0984)									S ^{1,3}

Some leads may not be available in high-performance nut material or some anti-backlash nuts. Contact Thomson for more detail.
 Lead designations for MLA are shown in parenthesis.
 Lead screw not available in precision grade accuracy (P).

Note: Not all available lead screws are shown above. Please contact Thomson for more details.

Specifications

Basic Specifications								
Lead Screw								
Material			300 S	eries Stainless	Steel			
Standard Coating ¹		None						
Standard Lead Accuracy	[in./ft. (µm/300 mm)]	0.010 (250)						
Precision Lead Accuracy	[in./ft. (µm/300 mm)]			0.003 (75)				
Straightness	[in./ft. (µm/300 mm)]			0.005 (125)				
Lead Nut								
Standard Material			Internally	lubricated ace	tal (POM)			
High Performance Material			Interr	nally lubricated	PEEK			
Nut Efficiency ²	[%]			Up to 85				
Typical Linear Travel Life	[in. (km)]			$5 \times 10^6 (125)$				
Positional Repeatability with Standard Nut ³	[in. (mm)]		0.005 to	0.010 (0.127 t	o 0.254)			
Positional Repeatability with Anti-Backlash Nut ⁴	[in. (mm)]			<0.002 (0.051)				
Motor								
Frame Size		NEMA 8	NEMA 11	NEMA 14	NEMA 17	NEMA 23		
Step Size	[°]	1.8	1.8	1.8	1.8	1.8		
Max. Axial Load ⁵	[lbs. (N)]	5 (22)	20 (89)	50 (222)	75 (334)	200 (890)		
Axial Pre-Load ⁶	[lbs. (N)]	5 (22)	20 (89)	30 (133)	40 (178)	40 (178)		
Concentricity of Mounting Pilot to Shaft	[in. (mm)]			0.003 (0.08) TIF	}			
Perpendicularity of Shaft to Mounting Face	[in. (mm)]			0.003 (0.08) TIF	}			
Max. Case Temperature	[°F (°C)]	140	(60)		176 (80)			
Storage Temperature	[°F (°C)]		-4	to 122 (-20 to 5	50)			
Ambient Temperature	[°F (°C)]		-4	to 122 (-20 to 5	50)			
Max. Humidity (non-condensing)	[%]			85				
Magnet Wire Insulation			Clas	ss B 130 °C (26	6 °F)			
Insulation Resistance			100	Mohm @ 500	VDC			
Dielectric Strength			500	VAC for 1 min	ute			
Assembly								
Max. Backlash with Standard Nut ⁷	[in. (mm)]			0.010 (0.25)				
Max. Backlash with XC Anti-Backlash Nut	[in. (mm)]	0 (0)						
Max Lead Screw Runout ⁹	[in. (mm)]	0.010 (250)						
Operating Temperature	[°F (°C)]							
MLA Max Side Load ⁸	[% of axial load]			10				
MLA Extension Tube Max Total Rotational Play 1. Contact Thomson for optional lead screw coatings.	[+/- degrees]			3				

 $^{{\}bf 1.}\ Contact\ Thomson\ for\ optional\ lead\ screw\ coatings.$

^{2.} Depending on lead, nut material and lubrication.

^{3.} Depends on nut, load and orientation.

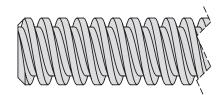
^{4.} For best positional repeatability, load should be kept well below design load of nut.

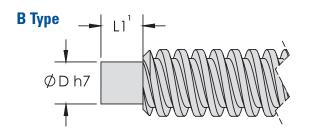
^{5.} Max. axial load based on a L10 life of 10000 hours of continuous motion at speeds of 100 to 300 RPM.

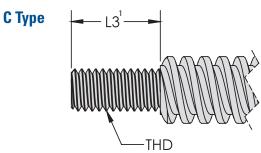
^{6.} Can be adjusted based on application requirements. If axial load exceeds pre-load of motor, motor shaft may deflect up to 0.003 in. (0.08 mm) for configurations with axial load pulling away from motor face.

^{7.} Nut fit can be adjusted depending on backlash requirements.

^{8.} Max radial load on MLA assemblies depends on load orientation, speed, stroke and other factors. For optimal performance, side loads should be avoided at end of travel. Contact Thomson for application assistance.

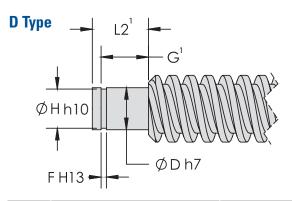

^{9.} Assemblies with lead screws exceeding max recommended length may have a higher runout.


Lead Screw Standard End Machining



MLN

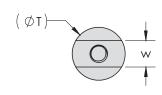
A0

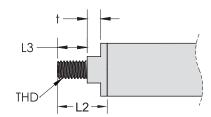


N 4 A OLL	in	ı	m	m	Compatible Lead				
MACH.	ØD L1		ØD	L1	Screws				
B1	0.0984	0.098	2.50	2.50	0.188 in, 4 mm, 0.25 in, 6 mm, 0.313 in, 8 mm, 0.375 in, 10 mm				
B2	0.1575	0.197	4.00	5.00	0.25 in, 6 mm, 0.313 in, 8 mm, 0.375 in, 10 mm				
В3	0.1969	0.197	5.00	5.00	0.313 in, 8 mm, 0.375 in, 10 mm				
B4	0.2362	0.236	6.00	6.00	0.375 in, 10 mm				

* * * * * * * * * *	in	ı	A 4 A O L L	mm		Compatible Lead				
MACH.	THD	L3	MACH.	THD	L3	Screws				
C1	#4-40	0.250	C5	M2.5X0.45	6.35	0.188 in, 4 mm, 0.25 in, 6 mm, 0.313 in, 8 mm,				
C2	#8-32	0.250				0.375 in, 10 mm				
02	# O OZ	0.200	C6	M4X0.7	6.35	0.25 in, 6 mm, 0.313 in,				
C3	#10-24	0.275				8 mm, 0.375 in, 10 mm				
63	#10-24	0.375	C7	M5X0.8	9.53	0.313 in, 8 mm,				
						0.375 in, 10 mm				
C4	1/4-20	0.500	C8	M6X1.0	12.70	0.375 in, 10 mm				

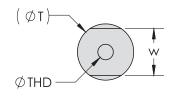
			in					mm			
MACH.	ØD	L2	G	F	ØН	ØD	L2	G	F	ØН	Compatible Lead Screws
D1	0.0984	0.157	0.120	0.022	0.075	2.50	4.00	3.05	0.56	1.91	0.188 in, 4 mm, 0.25 in, 6 mm, 0.313 in, 8 mm, 0.375 in, 10 mm
D2	0.1575	0.256	0.217	0.020	0.150	4.00	6.50	5.51	0.51	3.81	0.25 in, 6 mm, 0.313 in, 8 mm, 0.375 in, 10 mm
D3	0.1969	0.276	0.224	0.028	0.189	5.00	7.00	5.69	0.70	4.80	0.313 in, 8 mm, 0.375 in, 10 mm
D4	0.2362	0.315	0.266	0.030	0.220	6.00	8.00	6.76	0.76	5.59	0.375 in, 10 mm


^{1.} Typical tolerance is +/- 0.005 in (+/- 0.13 mm)


Note: Machining is split into four different categories (A, B, C and D). Within each category are different sizes (X1, X2, X3,...). Please specify exact end machining when configuring part number. Above are examples of the standard end machining offered. Tolerances not specified are typically +/-0.005 in (+/-0.13 mm). Contact Thomson for custom end-machining options.

Standard End Mounting MLA

C Type





Motor	Motor		in									
Size	MACH.	THD	L2	L3	W	t	ØT					
MLA08, X8	C1	#4-40	0.380	0.236	0.197	0.105	0.354					
MLA11, 14, 17	C2	#8-32	0.444	0.265	0.265	0.120	0.472					
MLA23	C3	1/4-20	0.714	0.500	0.433	0.135	0.866					

Motor			mm									
Size	MACH.	THD	L2	L3	W	t	ØT					
MLA08, X8	C4	M3X0.5	9.65	5.99	5.00	2.67	9.00					
MLA11, 14, 17	C5	M4X0.7	11.28	6.73	6.73	3.05	12.00					
MLA23	C6	M6X1.0	18.14	12.70	11.00	3.43	22.00					

E Type

Motor			in									
Size	MACH.	THD	L2	W	t	ØT						
MLA08, X8	E1	# 4-40 ↓ 0.236	0.276	0.315	0.236	0.354						
MLA11, 14, 17	E2	#8-32 ↓ 0.265	0.324	0.394	0.265	0.472						
MLA23	E3	1/4-20 ↓ 0.500	0.579	0.709	0.500	0.866						

Motor		mm									
Size	MACH.	THD	L2	W	t	ØT					
MLA08, X8	E4	M3X0.5 ‡ 5.99	7.01	8.00	5.99	9.00					
MLA11, 14, 17	E5	M4X0.7 I 6.73	8.23	10.01	6.73	12.00					
MLA23	E6	M6X1.0 I 12.70	14.71	18.01	12.70	22.00					

Note: When attaching load to end mounting, dimension "w" and "t" must be properly restrained in order to prevent damage to actuator. Contact Thomson for custom end-machining options.

Specifications - MLx08, MLxX8 Motor Size

Features and Benefits

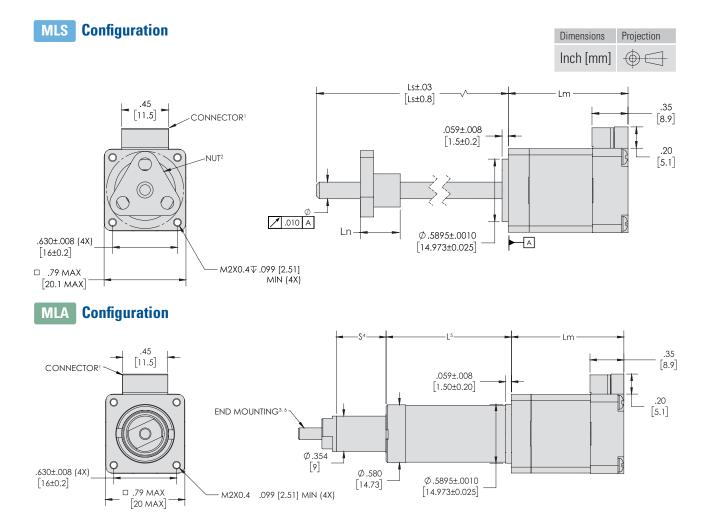
- NEMA 8 motor (size 21 mm)
- Available in rotating screw (MLS) and actuator (MLA) configurations
- Choose between a variety of inch and metric leads
- Recommended max. thrust force 5 lbs. (22 N).
 See performance plots for actual load limits
- Recommended max. lead screw length of 4 in.
 (102 mm) for MLS and 1.5 in. (38 mm) stroke for MLA.
- Side load capacity of up to 10% of axial load for MLA configurations.¹

Motor Options

Motor Code ²	Holding) Torque	Voltage/ phase ⁴	Current/ phase ⁵	Resistance	Inductance	Power Draw	Step Angle	Length	otor , maxi- (Lm)	Rotor Inertia	Motor Weight
	[oz-in]	[mN-m]	[V]	[A]	[Ω]	[mH]	[W]	[°]	[in]	[mm]	[oz-in ²]	[lbs]
MLx08A05 ³	2.2	16	4.5	0.50	9	2	2.3	1.8	1.16	29.5	0.01	0.13
MLxX8A05	2.83	20	3.9	0.50	7.7	2	1.9	1.8	1.16	29.5	0.01	0.13

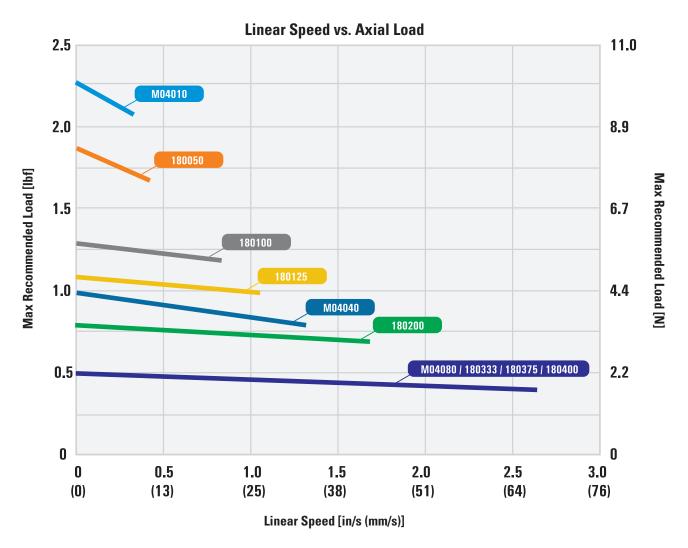
Inch Lead Screw Options⁶

Diameter	Lead	Travel/step	Screw Code ⁷
[in.]	[in.]	[in.]	
	0.050	0.00025	180050 (0050)
0.100	0.100	0.00050	180100 (0100)
0.188	0.200	0.00100	180200 (0200)
	0.400	0.00200	180400 (0400)


N / - +	اء ۽ ۽ ا	C	0-4:6
IVIETRIC	Lead	Screw	Options ⁶

Diameter	Lead	Travel/step	Screw Code ⁷
[mm]	[mm]	[mm]	
	1	0.00500	M04010 (0039)
4	4	0.02000	M04040 (0157)
	8	0.04000	M04080 (0315)

- 1. Maximum side load on MLA assemblies depends on load orientation, speed, stroke and other factors. For optimal performance, side loads should be avoided at end of travel. Contact Thomson for application assistance.
- 2. Contact Thomson for additional available motor windings
- 3. "x" denotes placeholder for S or A depending upon configuration.
- 4. Applied voltage can be any value above this number as long as output current is controlled at the rated RMS current.
- 5. For optimal torque output, motor should be driven at 1.41 x RMS current listed above.
- 6. See lead screw selection matrix on pages 12-13 for other available lead screw configurations. Contact Thomson for more information about custom lead screw availablelity.
- 7. Codes within parentheses are for MLA configurations. Screw code utilized within the full assembly part number.


Dimensions – MLx08, MLxX8

- 1. S6B-ZR(LF)(SN) connector shown. Wire harness with JST ZHR-6 mating connector and flying leads included with motor. For wiring diagram and connector details, see page 45.
- 2. RSF1800 (RS1) lead nut shown. For other nut options, see Nut Selection table on pages 36-37.
- 3. Standard M3x0.5 male end mounting (C4) shown. For other end mount options, see page 16.
- 4. Max stroke length for MLA08 configurations is 1.5 in. (38 mm). End of travel collisions should be avoided. Contact Thomson for additional stroke lengths.
- 5. Cover tube length (L) = stroke (S) + 0.76 in. (19.3 mm).
- 6. Extension tube total max rotational play = \pm 3 degrees. Fit can be modified. Contact Thomson for more details.

MLx08 — Performance Diagrams

MLx08A05

Note: Simplified performance diagrams are theoretical only and assume ideal conditions with a 24 VDC power supply, standard material lead nut and a moderate length, non-lubricated lead screw. Higher loads and speeds can be achieved. For more detailed performance plots and sizing tools, please visit www.thomsonlinear.com/en/products/motorized-lead-screws.

Specifications – MLx11 Motor Size

Features and Benefits

MLx11A10²

- NEMA 11 motor (size 28 mm).
- Choose between a variety of inch and metric lead screws
- Recommended max. thrust force 20 lbs. (89 N).

0.071

2.19

1.00

- Recommended max. lead screw length of 4 in. (102 mm) for MLS / MLN and 2.5 in. (64 mm) stroke for MLA.
- Side load capacity of up to 10% of axial load for MLA configurations.
- MLS and MLA configurations are encoder ready.
 See pages 40-41 for more details.

Motor Options Motor code¹ Holding torque Voltage Current Resistance Inductance Power Step Motor length, Rotor Motor weight / phase3 / phase4 [mH] draw angle maximum (Lm) inertia [V] [A] [W] [°] [oz-in²] [lbs] [oz-in] [N-m] [in] [mm] MLx11A05² 9.3 0.066 3.85 0.51 7.54 5.22 1.96 1.8 1.26 32.0 0.24 0.06

2.19

Inch Lead Screw Uptions ⁵						
Diameter [in.]	Lead [in]	Screw code ⁶				
	0.050	0.00025	180050			
0.188 ⁷	0.100	0.00050	180100			
U.100°	0.200	0.00100	180200			
	0.400	0.00200	180400			
	0.0313	0.00016	250031 (0031)			
	0.0625	0.00031	250063 (0063)			
0.2508	0.1250	0.00063	250125 (0125)			
0.230	0.2500	0.00125	250250 (0250)			
	0.5000	0.00250	250500 (0500)			
	0.7500	0.00375	250750 (0750)			

- 1. Contact Thomson for additional available motor windings.
- 2. "x" denotes placeholder for S, N or A depending upon configuration.
- Applied voltage can be any value above this number as long as output current is controlled at the rated RMS current.
- 4. For optimal torque output, motor should be driven at 1.41 x RMS current listed above.

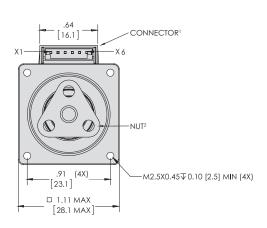
Metric Lead Screw Options⁵ Diameter [mm] Lead [mm] Travel / step [mm] Screw code⁶ 0.00500 M04010 47 0.02000 M04040 0.04000 M04080 0.00500 M06010 (0039) 68 0.03000 M06060 (0236) 12 0.06000 M06120 (0472)

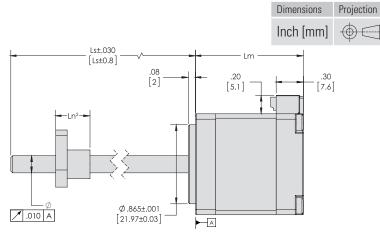
1.26

32.0

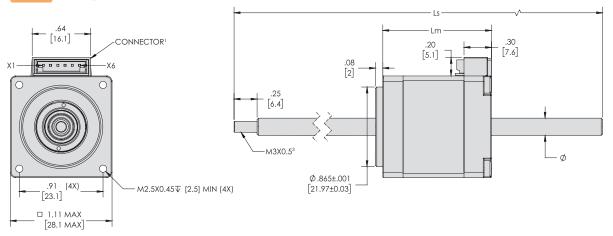
0.06

0.24

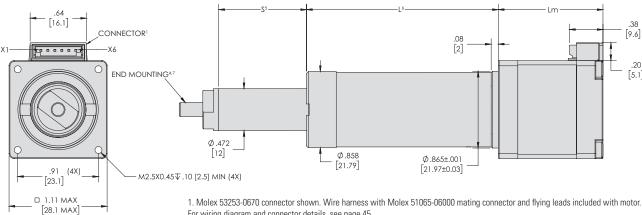

2.19


1.8

- 5. See lead screw selection matrix on pages 12-13 for additional lead screw configurations.
- Codes within parentheses are for MLA configurations. Screw code utilized within the full assembly part number
- 7. Lead screw diameter not compatible with MLA configurations.
- 8. Lead screw diameter not compatible with MLN configurations.

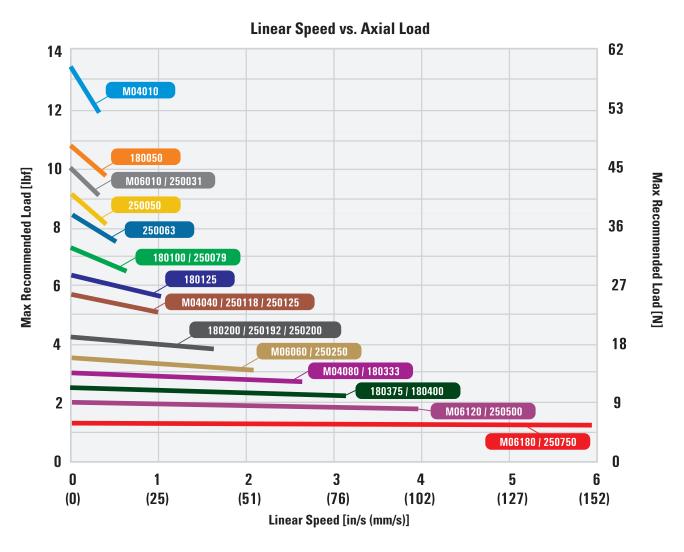

Dimensions - MLx11

Configuration



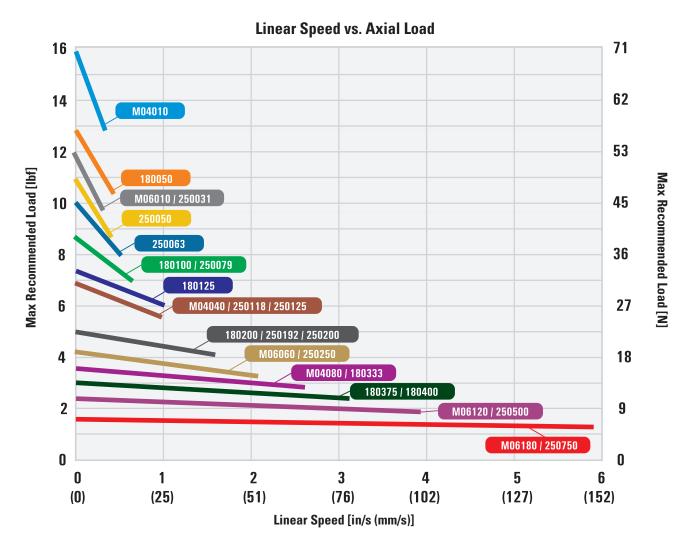
Configuration

MLA Configuration



- For wiring diagram and connector details, see page 45.
- 2. RSF1800 (RS1) lead nut shown. For additional nut options, see Nut Selection table on pages 36-37.
- 3. Standard M3x0.5 male threaded end machining shown. For additional end-machining options, see page 15.
- 4. Standard M4x0.7 male end mounting (C5) shown. For additional end mount options, see page 16.
- 5. Max stroke length for MLA11 configurations is 2.5 in. (64 mm). End of travel collisions should be avoided. Contact Thomson for additional stroke lengths.
- 6. Cover tube length (L) = stroke (S) + 1.16 in. (29.5 mm).
- 7. Extension tube total max rotational play = +/-3 degrees. Fit can be modified. Contact Thomson for more details.

MLx11 — Performance Diagrams


MLx11A05

Note: Simplified performance diagrams are theoretical only and assume ideal conditions with a 24 VDC power supply, standard material lead nut and a moderate length, non-lubricated lead screw. Higher loads and speeds can be achieved. For more detailed performance plots and sizing tools, please visit www.thomsonlinear.com/en/products/motorized-lead-screws.

MLx11 – Performance Diagrams

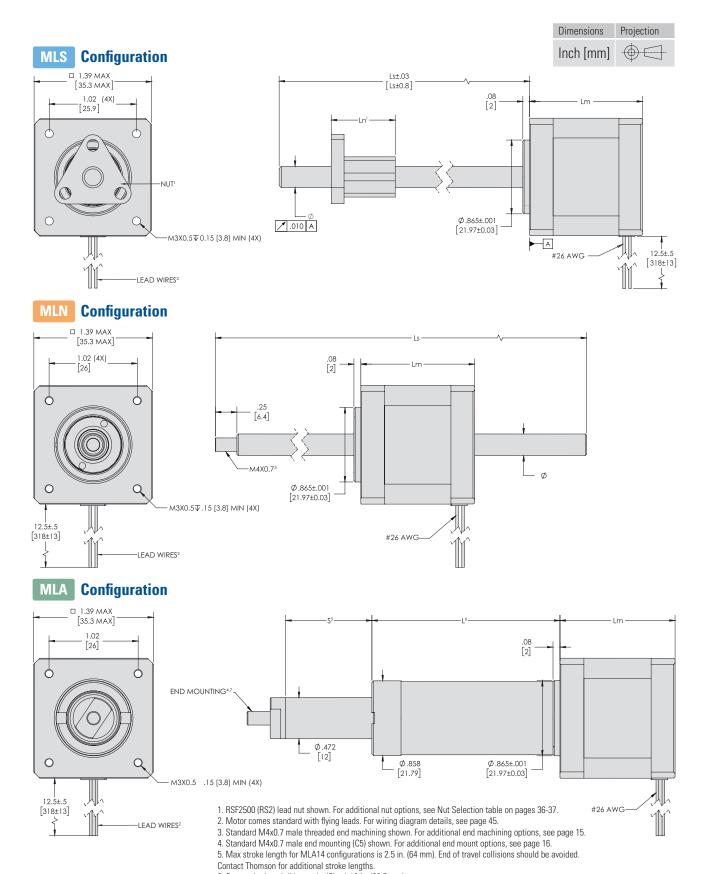
MLx11A10

Note: Simplified performance diagrams are theoretical only and assume ideal conditions with a 24 VDC power supply, standard material lead nut and a moderate length, non-lubricated lead screw. Higher loads and speeds can be achieved. For more detailed performance plots and sizing tools, please visit www.thomsonlinear.com/en/products/motorized-lead-screws.

Specifications – MLx14 Motor Size

Features and Benefits

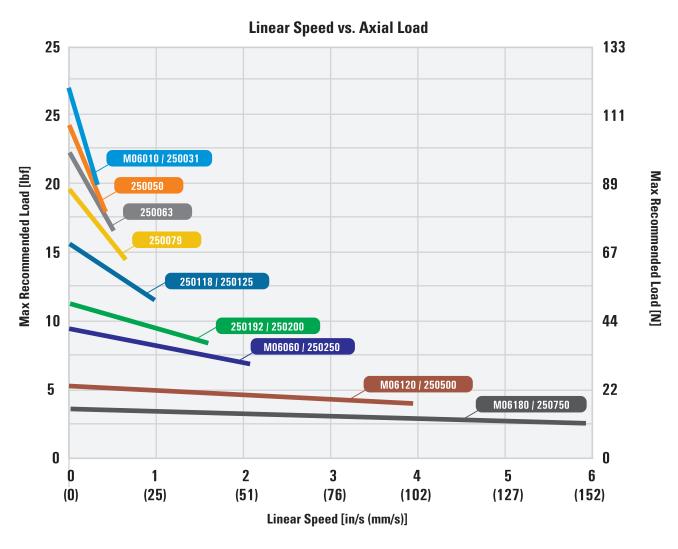
- NEMA 14 motor (size 35 mm).
- Choose between a variety of inch and metric lead screws
- Recommended max. thrust force 50 lbs. (222 N).
- Recommended max. lead screw length of 8 in. (203 mm) for MLS / MLN and 2.5 in (64 mm) stroke for MLA.
- Side load capacity of up to 10% of axial load for MLA configurations.
- MLS and MLA configurations are encoder ready.
 See pages 40-41 for more details.


Motor Options												
Motor code ¹	¹ Holding torque		/ phase 3 / phase 4 [Ω]		Inductance Power draw	draw angle	Motor length, maximum (Lm)		Rotor inertia	Motor weight		
	[oz-in]	[N-m]	[V]	[A]			[W]	["]	[in]	[mm]	[oz-in ²]	[lbs]
MLx14A08 ²	25.8	0.182	3.42	0.88	3.89	5.51	3.01	1.8	1.34	34.0	0.10	0.41
MLx14A13 ²	23.0	0.162	1.71	1.35	1.27	1.79	2.31	1.8	1.34	34.0	0.10	0.41

Inch Lead Screw Options ⁵							
Diameter [in.]	Lead [in] Travel / step [in] Screw cod						
	0.0313	0.00016	250031 (0031)				
	0.0625	0.00031	250063 (0063)				
0.250	0.1250	0.00063	250125 (0125)				
0.250	0.2500	0.00125	250250 (0250)				
	0.5000	0.00250	250500 (0500)				
	0.7500	0.00375	250750 (0750)				

Metric Lead Screw Options ⁵								
Diameter [mm]	Diameter [mm] Lead [mm] Travel / step [mm] Screw code ⁶							
	1	0.00500	M06010 (0039)					
6	6	0.03000	M06060 (0236)					
	12	0.06000	M06120 (0472)					

- 1. Contact Thomson for additional available motor windings.
- 2. "x" denotes placeholder for S, N or A depending upon configuration.
- 3. Applied voltage can be any value above this number as long as output current is controlled at the rated RMS current.
- 4. For optimal torque output, motor should be driven at 1.41 x RMS current listed above.
- 5. See lead screw selection matrix on pages 12-13 for additional lead screw configurations.
- 6. Codes within parentheses are for MLA configurations. Screw code utilized within the full assembly part number.

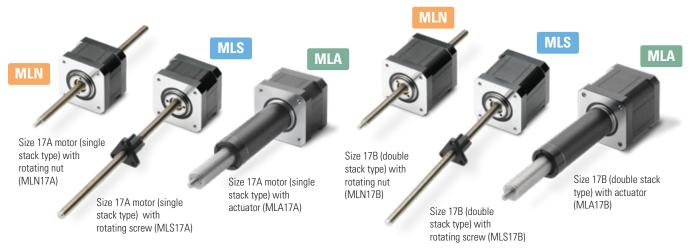

Dimensions - MLx14

ML14 — Performance Diagrams


MLx14A08

Note: Simplified performance diagrams are theoretical only and assume ideal conditions with a 24 VDC power supply, standard material lead nut and a moderate length, non-lubricated lead screw. Higher loads and speeds can be achieved. For more detailed performance plots and sizing tools, please visit www.thomsonlinear.com/en/products/motorized-lead-screws.

ML14 – Performance Diagrams


MLx14A13

Note: Simplified performance diagrams are theoretical only and assume ideal conditions with a 24 VDC power supply, standard material lead nut and a moderate length, non-lubricated lead screw. Higher loads and speeds can be achieved. For more detailed performance plots and sizing tools, please visit www.thomsonlinear.com/en/products/motorized-lead-screws.

Specifications – MLx17 Motor Size

Features and Benefits

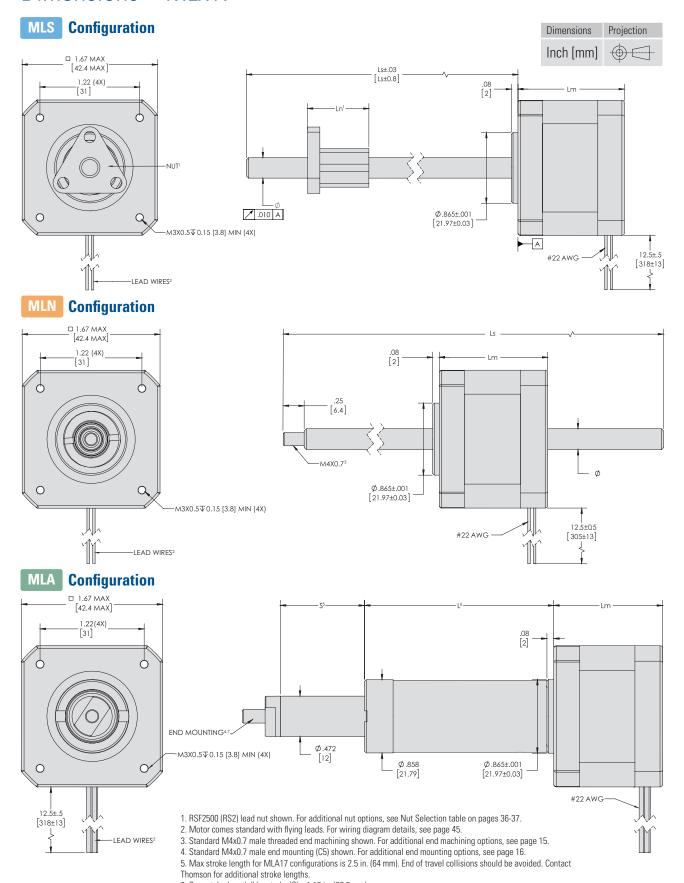
- NEMA 17 motor (size 42 mm).
- Choose between a variety of inch and metric lead screws
- Recommended max. thrust force 75 lbs (334 N).
- Recommended max. lead screw length of 8 in. (203 mm) for MLS / MLN and 2.5 in (64 mm) stroke for MLA.
- Side load capacity of up to 10% of axial load for MLA configurations.
- MLS and MLA configurations are encoder ready.
 See pages 40-41 for more details.

Motor Options

Motor code ¹	Holding	j torque	Voltage / phase ³	Current / phase ⁴	Resistance $[\Omega]$	Inductance [mH]	Power	Step angle	Motor maxim	length, um (Lm)	Rotor inertia	Motor weight
	[oz-in]	[N-m]	[V]	[A]			[W]	[-]	[in]	[mm]	[oz-in ²]	[lbs]
MLx17A10 ²	77.0	0.544	2.33	1.00	2.33	5.61	2.33	1.8	1.34	34.0	0.23	0.4
MLx17A15 ²	92.0	0.650	1.76	1.50	1.17	3.26	2.63	1.8	1.34	34.0	0.23	0.4
MLx17B10 ²	107.8	0.761	1.69	1.00	1.69	5.66	1.69	1.8	1.89	48.0	0.47	0.7
MLx17B15 ²	102.8	0.726	1.31	1.50	0.87	2.7	1.96	1.8	1.89	48.0	0.47	0.7

Inch Lead Screw Options⁵

Diameter [in]	Lead [in]	Travel / step [in]	Screw code ⁶
	0.0313	0.00016	250031 (0031)
	0.0625	0.00031	250063 (0063)
0.250	0.1250	0.00063	250125 (0125)
0.230	0.2500	0.00125	250250 (0250)
	0.5000	0.00250	250500 (0500)
	0.7500	0.00375	250750 (0750)

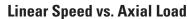

Metric Lead Screw Options ⁵							
Diameter [mm] Lead [mm] Travel / step [mm] Screw code ⁶							
	1	0.00500	M06010 (0039)				
6	6	0.03000	M06060 (0236)				

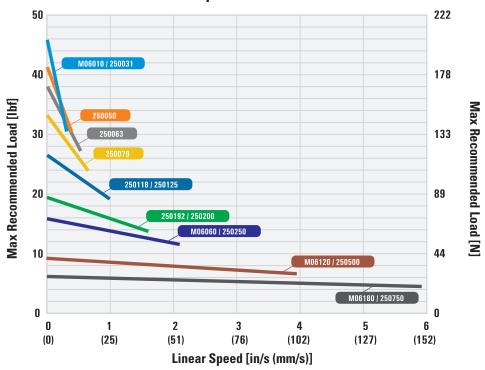
0.06000

M06120 (0472)

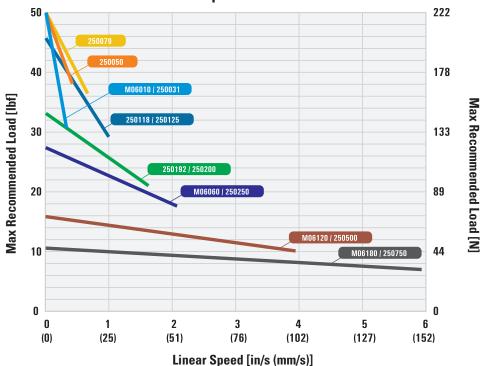
- 1. Contact Thomson for additional available motor windings.
- 2. "x" denotes placeholder for S, N or A depending upon configuration.
- 3. Applied voltage can be any value above this number as long as output current is controlled at the rated RMS current.
- 4. For optimal torque output, motor should be driven at 1.41 x RMS current listed above.
- 5. See lead screw selection matrix on pages 12-13 for additional lead screw configurations.
- 6. Codes within parentheses are for MLA configurations. Screw code utilized within the full assembly part number.

Dimensions – MLx17


www.thomsonlinear.com

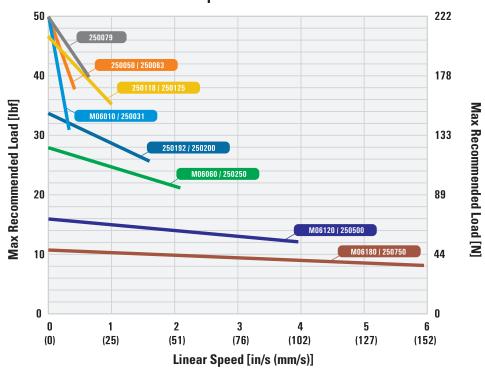

Cover tube length (L) = stroke (S) + 1.16 in. (29.5 mm).
 Extension tube total max rotational play = +/-3 degrees. Fit can be modified. Contact Thomson for more details.

ML17 — Performance Diagrams


MLx17A10

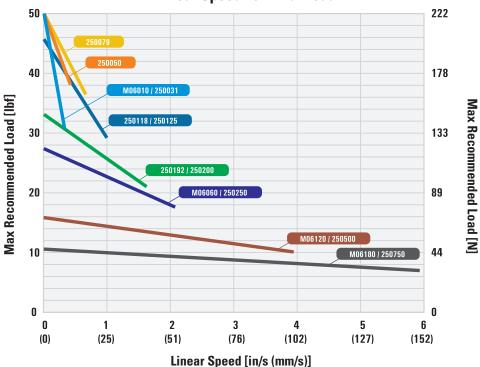
MLx17B10

Linear Speed vs. Axial Load



Note: Simplified performance diagrams are theoretical only and assume ideal conditions with a 24 VDC power supply, standard material lead nut and a moderate length, non-lubricated lead screw. Higher loads and speeds can be achieved. For more detailed performance plots and sizing tools, please visit www.thomsonlinear.com/en/products/motorized-lead-screws.

ML17 — Performance Diagrams


MLx17A15

MLx17B15

Linear Speed vs. Axial Load

Note: Simplified performance diagrams are theoretical only and assume ideal conditions with a 24 VDC power supply, standard material lead nut and a moderate length, non-lubricated lead screw. Higher loads and speeds can be achieved. For more detailed performance plots and sizing tools, please visit www.thomsonlinear.com/en/products/motorized-lead-screws.

Specifications – MLx23 Motor Size

Features and Benefits

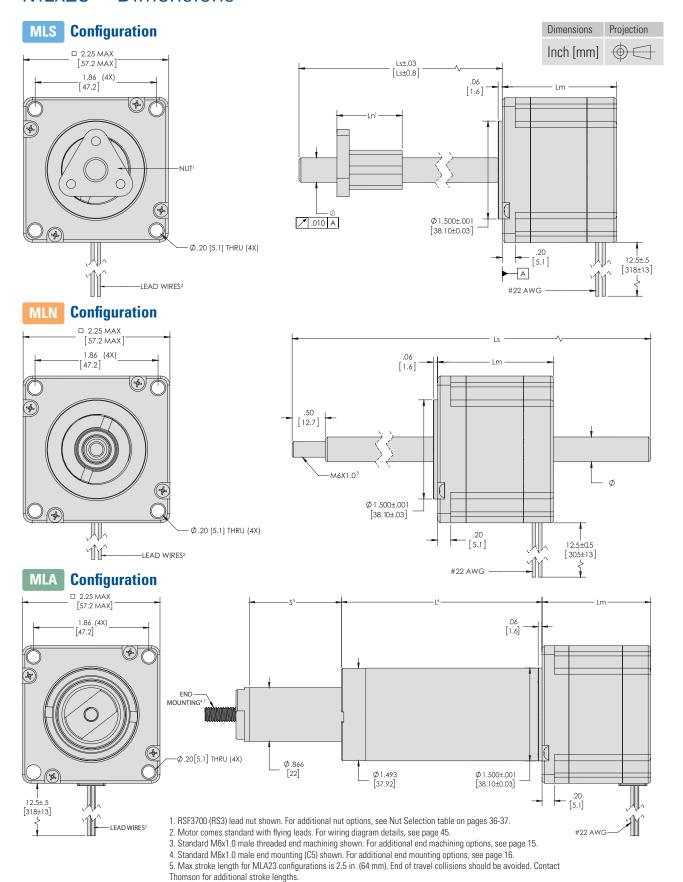
- NEMA 23 motor (size 57 mm).
- Choose between a variety of inch and metric lead screws.
- Recommended max. thrust force 200 lbs. (890 N).
- Recommended max. stroke length for MLA is 2.5 in. (64 mm).
- Side load capacity of up to 10% of axial load for MLA configurations.
- For MLS/MLN, recommended max. lead screw length for 0.313 in. (8 mm) diameter is 12 in. (305 mm) / max. lead screw length for 0.375 in. (10 mm) diameter is 16 in. (406 mm).
- MLS and MLA configurations are encoder ready.
 See pages 40-41 for more details.

Motor Options

Motor code ¹	Holding	g torque	Voltage / phase ³	Current / phase ⁴	Resistance [Ω]	Inductance [mH]	Power	Step angle	Motor maxim	length, um (Lm)	Rotor inertia	Motor weight
	[oz-in]	[N-m]	[V]	[A]			[W]	[-]	[in]	[mm]	[oz-in ²]	[lbs]
MLx23A15 ²	121.0	0.854	3.77	1.55	2.43	4.20	5.84	1.8	1.78	45.2	1.04	1.13
MLx23A30 ²	123.8	0.875	1.74	3.00	0.58	1.16	5.22	1.8	1.78	45.2	1.04	1.13
MLx23B19 ²	251.2	1.774	3.80	1.90	2.00	5.84	7.22	1.8	2.59	65.8	2.13	1.70
MLx23B39 ²	260.8	1.842	1.99	3.90	0.51	1.45	7.76	1.8	2.59	65.8	2.13	1.70

Inch Lead Screw Options⁵

Diameter [in]	Lead [in]	Travel / step [in]	Screw code ⁶
	0.083	0.00042	310083
	0.167	0.00083	310167
0.3137	0.250	0.00125	310250
	0.500	0.00250	310500
	1.000	0.00500	311000
	0.063	0.00031	370063 (0063)
	0.100	0.00050	370100 (0100)
0.375	0.167	0.00083	370167 (0167)
0.373	0.250	0.00125	370250 (0250)
	0.500	0.00250	370500 (0500)
	1.000	0.00500	371000 (1000)


- 1. Contact Thomson for additional available motor windings.
- 2. "x" denotes placeholder for S, N or A depending upon configuration.
- 3. Applied voltage can be any value above this number as long as output current is controlled at the rated RMS current.

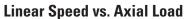
Metric Lead Screw Options⁵

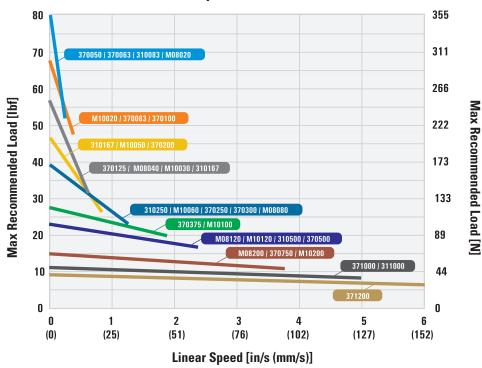
Diameter [mm]	Lead [mm]	Travel / step [mm]	Screw code ⁶
	2	0.01000	M08020
	4	0.02000	M08040
87	8	0.04000	M08080
	12	0.06000	M08120
	20	0.10000	M08200
	2	0.01000	M10020 (0079)
	3	0.01500	M10030 (0118)
10	5	0.02500	M10050 (0197)
	10	0.05000	M10100 (0394)
	20	0.10000	M10200 (0787)

- 4. For optimal torque output, motor should be driven at 1.41 x RMS current listed above.
- See lead screw selection matrix on pages 12-13 for additional lead screw configurations.
 Codes within parentheses are for MLA configurations. Screw code utilized within the full assembly part number
- 7. Lead screw diameter not compatible with MLA configurations

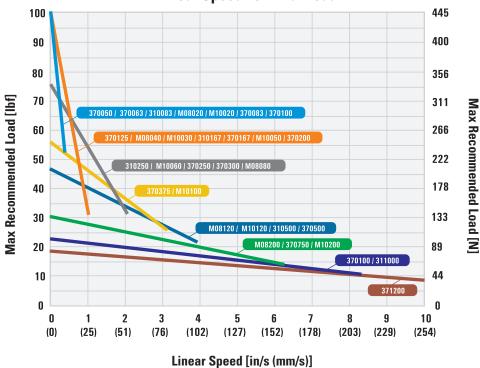
MLx23 - Dimensions

www.thomsonlinear.com

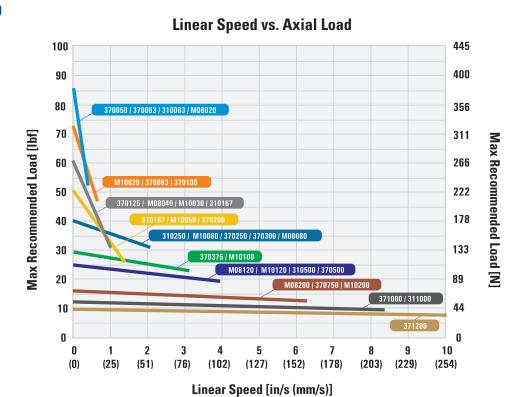

6. Cover tube length (L) = stroke (S) + 1.74 in. (44.2 mm).

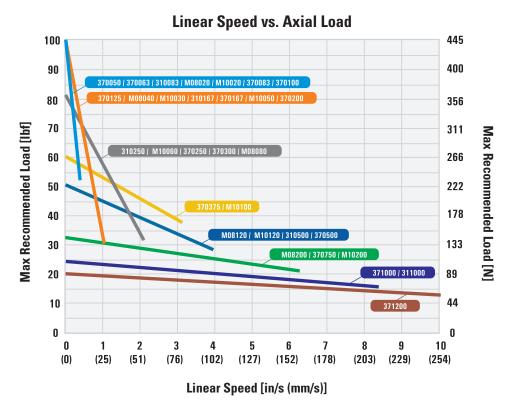

7. Extension tube total max rotational play = +/-2 degrees. Fit can be modified. Contact Thomson for more details.

ML23 — Performance Diagrams


MLx23A15

MLx23B19


Linear Speed vs. Axial Load


Note: Simplified performance diagrams are theoretical only and assume ideal conditions with a 24 VDC power supply, standard material lead nut and a moderate length, non-lubricated lead screw. Higher loads and speeds can be achieved. For more detailed performance plots and sizing tools, please visit www.thomsonlinear.com/en/products/motorized-lead-screws.

ML23 – Performance Diagrams

ML23A30

ML23B39

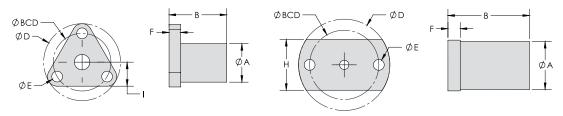
Note: Simplified performance diagrams are theoretical only and assume ideal conditions with a 24 VDC power supply, standard material lead nut and a moderate length, non-lubricated lead screw. Higher loads and speeds can be achieved. For more detailed performance plots and sizing tools, please visit www.thomsonlinear.com/en/products/motorized-lead-screws.

Nut Selection

Lead Nut						
Series	Image	Part Number	P/N Ref. ¹	Compatible Motor(s)	Catalog Design Load ² (lbf)	
RSF		RSF1800	RS1	08, 11	10	
		RSF2500	RS2	11, 14, 17	25	
		RSF3700	RS3	14, 17, 23	60	
RSFH		RSFH1800	RH1	08, 11	20	
		RSFH2500	RH2	11, 14, 17	50	
		RSFH3700	RH3	14, 17, 23	120	
XC ₃		XCMF1800	XF1	08, 11	5	
		XCMT1800	XT1	08, 11	5	
		XCMF2500	XF1	11, 14, 17	5	
		XCMT2500	XT1	11, 14, 18	5	
		XCF3700SH	FS3	14, 17, 23	25	
		XCT3700SH	TS3	14, 17, 23	25	
		XCF3700	XF3	14, 17, 23	25	
		XCT3700	XT3	14, 17, 23	25	
		XCF5000	XF5	23	125	
		XCT5000	XT5	23	125	
		XCF2500	XF2	11, 14, 17	10	
		XCT2500	XT2	11, 14, 17	10	
MTS		MTS1800	MT2	08, 11	10	
		MTS2500	MT2	14, 17	10	
		MTS3100	MT2	14, 17, 23	50	
		MTS3700	MT3	14, 17, 23	60	
		MTS4300	MT3	14, 17, 23	60	
		MTS5000	MT5	14, 17, 23	125	
SN		SN1800	SN2	08, 11	30	
		SN2500	SN2	14, 17	45	
		SN3100	SN3	14, 17, 23	70	
		SN3700	SN3	14, 17, 23	70	
		SN5000	SN5	14, 17, 23	100	
AFT		AFT2500	AF2	14, 17	5	
		AFT3700	AF3	14, 17, 23	10	
		AFT5000	AF5	23	25	
SNAB ⁴		SNAB1800	SB2	08, 11	10	
		SNAB2500	SB2	14, 17	25	
		SNAB3100	SB3	14, 17, 23	50	
		SNAB3700	SB3	14, 17, 23	70	
		SNAB5000	SB5	14, 17, 23	150	

^{1.} Three-digit reference to be used within the full MLS part number.

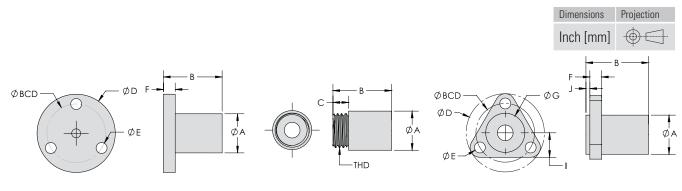
^{2.} Approximate max running load assuming 500 RPM and 50% duty cycle. For more detailed design limitations and sizing, contact Thomson.


^{3.} Some high-lead configurations are not available for the XC nut.

^{4.} Preload force is lower than stated design load. Exceeding preload force will cause spring to fully compress, and nut will lose anti-backlash properties. Preload force values: $SNAB1800/SNAB2500 = 1-3 \ lbs, SNAB3100/3700 = 2-5 \ lbs, and SNAB5000 = 4-9 \ lbs.$

				Lead	4 C ^v	row					
				Lea	J 30	iew					
0.188 in.	4 mm	0.25 in.	6 mm	0.313 in.	8 mm	0.375 in.	10 mm	0.43 in.	0.50 in.	12 mm	About
Х	Х										Standard triangular flange bearing grade acetal nut used on
		Х	Х	X	Х	Х	Х				stepper motor linear actuators.
Х	Х										Higher performance bearing grade PEEK alternative to standard
		Х	Х	Х	Х	Х	Х				RSF nut used on stepper motor linear actuators. Capable of with- standing higher loads, speeds and temperature requirements.
Х	Х			۸	۸	^	۸				Standard triangular flange / thread mount XC nuts used for 0.188
X	Х										in. (4 mm) lead screws.
		X X	X X								Standard triangular flange / thread mount XC nuts used for 0.25 in. (6 mm) lead screws.
				Х	Х	Х	Х				
				Χ	Χ	Х	Χ				Standard triangular flange / thread mount XC nuts used for 0.313 in. (8 mm) and 0.375 in. (10 mm) lead screws with
				Х	Х	Х	Х				short nut body length.
				X	Х	Х	Х				
								X X	X X	X	Standard round flange / thread mount XC nuts used for 0.5 in. (12 mm) lead screws.
		X X	X X								Flat flange (2-hole) and larger nut body alternative to XCM nut for 0.25 in. (6 mm) lead screws when a higher design load is required.
		Х	Χ								
				Х	Х						Triangular and round flange alternative to RSF nut. Identical
						Х	Х				bearing grade material but with overall larger dimensions over
								Х			RSF nut.
									Х	Х	
Х											
		Х	Х								
				Х	Х	,					Thread mount bearing grade acetal nut with standard backlash.
						Х	X	V	V	V	
		V	v					X	Х	Х	
		Х	Х	Х	Х	Х	Х	Х			Triangular flange alternative anti-backlash nut.
				^	٨	^	٨	^	Х	Х	mangalar hange are mative and backlast hat.
Х	Х										
		Х	Х								
				Х	Χ						Thread mount alternative anti-backlash nut.
						Х	X				
								X	Х	Χ	

General Nut Dimensions



RSF, MTS3700, XCF3700, XCMF, AFT2500 and AFT5000

XCF2500

	Series	RSF/RSFH					>	(C					
Lead Nut	N/A	RSF1800 / RSFH1800 (RS1 / RH1)	RSF2500 / RSFH2500 (RS2 / RH2)	RSF3700 / RSFH3700 (RS3 / RH3)	XCMF1800 / XCMF2500 (XF1 / XF1)	XCF3700SH (FS3)	XCF5000 (XF5)	XCF2500 (XF2)	XCMT1800 / XCMT2500 (XT1 / XT1)	XCT3700SH (TS3)	XCT5000 (XT5)	XCT2500 (XT2)	
	А	0.313 (7.95)	0.5 (12.7)	0.63 (16)	0.5 (12.7)	0.81 (20.57)	1.12 (28.44)	0.64 (16.25)	0.5 (12.7)	0.81 (20.57)	1.12 (28.44)	0.64 (16.25)	
	B ¹	0.375 (9.52)	0.75 (19.05)	1 (25.4)	0.9 (22.86)	1.34 (34.03)	2.25 (57.15)	1.18 (29.97)	0.9 (22.86)	1.34 (34.03)	2.25 (57.15)	1.18 (29.97)	
	С	-	-	-	-	-	-	-	0.2 (5.08)	0.25 (6.35)	0.375 (9.52)	0.187 (4.74)	
	D	0.75 (19.05)	1 (25.4)	1.25 (31.75)	1 (25.4)	1.53 (38.86)	1.75 (44.45)	1.19 (30.22)	-	-	-	-	
	Е	0.13 (3.3)	0.14 (3.55)	0.14 (3.55)	0.14 (3.55)	0.197 (5)	0.2 (5.08)	0.141 (3.58)	-	-	-	-	
Dimensions [in (mm)]	F	0.13 (3.3)	0.15 (3.81)	0.19 (4.82)	0.18 (4.57)	0.2 (5.08)	0.3 (7.62)	0.16 (4.06)	-	-	-	-	
Jimension	G	-	-	-	-	-	-	-	-	-	-	-	
	Н	-	-	-	-	-	-	0.66 (16.76)	-	-	-	-	
	I	0.25 (6.35)	0.31 (7.87)	0.41 (10.41)	0.31 (7.87)	0.48 (20.32)	-	-	-	-	-	-	
	J	-	-	-	-	-	-	-	-	-	-	-	
	BCD	0.5 (12.7)	0.75 (19.05)	0.875 (22.22)	0.75 (19.05)	1.125 (28.57)	1.406 (35.71)	0.9 (22.86)	-	-	-	-	
	THD ²	-	-	-	-	-	-	-	7/16-20	5/8-18	15/16- 16	9/16-18	

Dimension B shown is max length.
 Metric mounting thread available. Contact Thomson for more information.

MTS1800, MTS2500, MTS3100, MTS5000, and $$\operatorname{\textsc{XCF5000}}$$

SN and SNAB

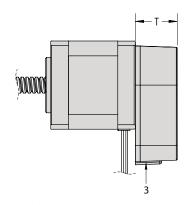
AFT3700

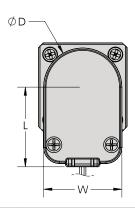
	Series		MTS			SN			AFT			SNAB	
Lead Nut	N/A	MTS1800 / MTS2500 / MTS3100 (MT2 / MT2 / MT2)	MTS3700 / MTS4300 (MT3 / MT3)	MTS5000 (MT5)	SN1800 / SN2500 (SN2 / SN2)	SN3100 / SN3700 (SN3 / SN3)	SN5000 (SN5)	AFT2500 (AF2)	AFT3700 (AF3)	AFT5000 (AF5)	SNAB1800 / SNAB2500 (SB2 / SB2)	SNAB3100 / SNAB3700 (SB3 / SB3)	SNAB500 (SB5)
	А	0.5 (12.7)	0.71 (18.03)	0.75 (19.05)	0.625 (15.87)	0.75 (19.05)	1 (25.4)	0.5 (12.7)	0.77 (19.55)	0.88 (22.35)	0.625 (15.87)	0.75 (19.05)	1 (25.4)
	B ¹	0.75 (19.05)	1.5 (38.1)	1.5 (38.1)	0.5 (12.7)	0.75 (19.05)	1 (25.4)	0.99 (25.14)	2 (50.8)	2.03 (51.56)	1.25 (31.75)	1.34 (34.03)	2 (50.8)
	С	-	-	-	0.187 (4.74)	0.25 (6.35)	0.375 (9.52)	-	-	-	0.187 (4.74)	0.25 (6.35)	0.375 (9.52)
	D	1 (25.4)	1.5 (38.1)	1.5 (38.1)	-	-	-	1 (25.4)	1.5 (38.1)	1.62 (41.14)	-	-	-
	E	0.14 (3.55)	0.2 (5.08)	0.2 (5.08)	-	-	-	0.14 (3.55)	0.2 (5.08)	0.2 (5.08)	-	-	-
sions	F	0.15 (3.81)	0.2 (5.08)	0.25 (6.35)	-	-	-	0.18 (4.57)	0.2 (5.08)	0.25 (6.35)	-	-	-
Dimensions	G	-	-	-	-	-	-	-	0.71 (18.03)	-	-	-	-
	Н	-	-	-	-	-	-	-	-	-	-	-	-
	I	-	0.469 (11.91)	-	-	-	-	0.313 (7.95)	0.469 (11.91)	0.5 (12.7)	-	-	-
	J	-	-	-	-	-	-	-	0.06 (1.5)	-	-	-	-
	BCD	0.75 (19.05)	1.125 (28.57)	1.125 (28.57)	-	-	-	0.75 (19.05)	1.125 (28.57)	1.25 (31.75)	-	-	-
	THD ²	-	-	-	9/16-18	5/8-18	15/16- 16	-	-	-	9/16-18	5/8-18	15/16- 16

Specifications — Encoders

Features and Benefits

- All MLS and MLA configurations are available with rear-mounted optical encoders (except for size 8)
- Two channel quadrature square wave outputs with optional third channel index output
- Various cycles per revolution (CPR) or pulses per revolution (PPR) available — from 32 to 10,000 CPR or 128 to 40,000 PPR

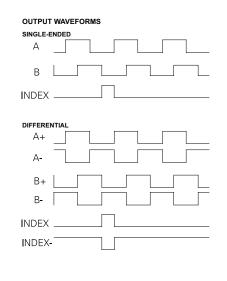

Available End	coder Configurations				
Encoder Model	CPR	Index	Output	Compatible Motors	
E2	32 ¹ , 50, 96, 100, 120 ¹ , 192, 200, 250, 256, 360, 400, 500, 512, 540, 720, 900, 1000, 1024, 1250, 2000 ² , 2048 ² , 2500 ² , 4000 ² , 4096 ² , 5000 ²	Index or Non-Index	Single-Ended	11, 14, 17	
E3	64 ¹ , 100, 200, 400, 500, 512, 1000, 1024, 1800, 2000, 2048, 2500, 3600 ² , 4000 ² , 4096 ² , 5000 ² , 7200 ² , 8000 ² , 8192 ² , 10000 ²	Index or Non-Index	Single-Ended	17, 23	
E4T	100, 108, 120, 125, 128, 144, 200, 248, 250, 256, 296, 300, 360, 400, 500, 512, 720, 800, 1000	Non-Index	Single-Ended or Differential	8	
E5	32 ¹ , 50, 96, 100, 192, 200, 250, 256, 360, 400, 500, 512, 540, 720, 900, 1000, 1024, 1250, 2000 ² , 2048 ² , 2500 ² , 4000 ² , 4096 ² , 5000 ²	Index or Non-Index	Single-Ended or Differential	11, 14, 17	
E6	64 ¹ , 100, 200, 400, 500, 512, 800 ² , 1000, 1024, 1800, 2000, 2048, 2500, 3600 ² , 4000 ² , 4096 ² , 5000 ² , 7200 ² , 8000 ² , 8192 ² , 10000 ²	Index or Non-Index	Single-Ended or Differential	17, 23	


^{1.} CPR available with Non-Index only

Note: Please specify encoder model, CPR, Index and Output (if applicable)

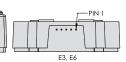
^{2.} CPR available with Index only

Dimensions — Encoders



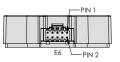
Encoder Specifications

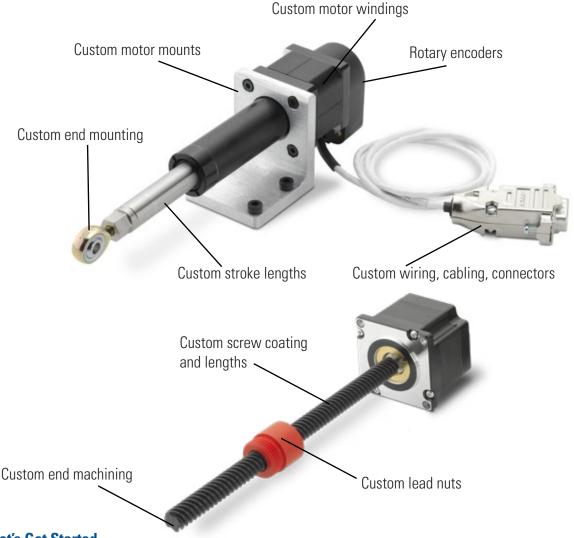
Encoder	Dii	mensions	(inch [mm	1])	Mating Connector ^{2,3}	Sup	ply Volt (VDC)	age ⁴	Operating Temperatu [°C])	ıre (°F	Max Acceleration (rad/sec²)
	T ¹	L	D	W	US Digital	Min	Тур	Max	Min	Max	Max
E2	0.62	0.82 [20.8]	1.19 [30.2]	1.19 [30.2]	CON-C5				40 [40]		
E3	[15.7]	0.57 [14.4]	2.2 [55.9]	1.62 [41.1]	CON-LC5				-40 [-40]		
E4T	0.45 [11.3]	0.51 [12.8]	0.87 [22]	0.58 [14.6]	CON-MIC4	4.5	5.0	5.5	-4 [-20]	212 [100]	250,000
E5	0.65	1.24 [31.6]	1.22 [31.1]	1.22 [31.1]	CON-FC5 (5 PIN)				-40 [-40] (CPR<2000) -25 [-13] (CPR≥2000)		
E6	[16.6]	1.42 [36]	2.22 [56.4]	1.39 [35.2]	CON-FC10 (10 PIN)				-40 [-40] (CPR<3600) -25 [-13] (CPR≥3600)		


- 1. MLx17 motor requires mounting plate, which increases dimension T by approximately 0.15 in [3.8 mm]. 2. All single-ended encoders are 4- or 5-pin connections. All differential encoders are 10-pin connections.
- 3. Encoder connectors and cables not provided.
- 4. For more detailed electrical specifications, visit www.usdigital.com.

Pinc	outs					
Pin	E2, E3	E	4T	E5, E6		
		Single-Ended	Differential	Single-Ended	Differential	
1	Ground	+5 VDC Power	Ground	Ground	Ground	
2	Index	A Channel	A+ Channel	Index	Ground	
3	A Channel	Ground	A- Channel	A Channel	Index-	
4	+5 VDC Power	B Channel	+5 VDC Power	+5 VDC Power	Index+	
5	B Channel	-	B+ Channel	B Channel	A- Channel	
6	-	-	B- Channel	-	A+ Channel	
7	-	-	-	-	+5 VDC Power	
8	-	-	-	-	+5 VDC Power	
9	-	-	-	-	B- Channel	
10	-	-	-	-	B+ Channel	

SINGLE-ENDED





Make it Yours By Customizing a Stepper Motor Linear Actuator

Thomson routinely collaborates with original equipment manufacturers globally to solve problems, boost efficiency and enhance the value passed on to their customers. Our technology and application experience can be harnessed to help you go beyond standard products to fit the exact needs on your next product.

Below you'll see an example of some common customizations for stepper motor linear actuator products. See next page for details on each option.

Let's Get Started

Call today and let's talk about how our vast offering of standard, modified standard and custom solutions can deliver the optimal balance of performance, life and installed cost for you. Global contact information is available at www.thomsonlinear.com/cs.

Custom lead screw end machining and MLA end mounting

Thomson standard end machining and end mounting offerings serve a wide variety of needs and applications. We can also accommodate special requests, including:

- Male or female threaded ends to your specified thread and pitch
- Custom-machined journals and ring groove
- Hex or square ends
- Keyways and cross holes
- Most custom end-machining and end-mounting options can be accommodated. Contact Thomson with a drawing to get started.

Custom lead nuts

For MLS configurations, Thomson can create a custom lead nut to your specifications. Simply contact us with a drawing, and we will work to meet your needs.

Custom motor mounts

A custom mount can provide increased design flexibility with regards to motor mounting in your assembly. Contact us if you'd like a special flange solution, and we'll work to create a mount to your exact dimensional requirements.

Rotary encoders

Applications often require extra information in the form of encoder feedback. Thomson has experience integrating encoders into our stepper motor linear actuator assemblies, and our selection delivers real-time information about position, speed and direction. Encoders can be seamlessly pre-assembled onto the backs of motors on Thomson ML products.

Custom wiring, cabling and connectors

To optimize integration of our motors in your assembly, Thomson offers custom connection methods, including:

- Flying wire leads or custom connectors
- Twisting wire leads to your specification
- Heat shrink or expandable tubing
- Custom cable housings
- Contact Thomson with your custom wiring requirements

Custom lead screw and MLA stroke lengths

Depending on the configuration, Thomson can provide a wide variety of lead screw and stroke lengths. For recommend maximums, see individual motor sections. For anything outside of these ranges, contact Thomson.

Screw coating

On MLS configurations requiring dry and maintenance-free lubrication, Thomson can offer PTFE coating.

Less common applications (MLA)

Consult Thomson engineering for assistance in any applications with the following characteristics:

- Motor speeds >500 rpm
- Side loads >10% and/or side loads at fully extended position for MLA configurations
- Vertically oriented configurations with a high load and lead
- Zero tolerance of grease leaking out of front seal in MLA configurations

Product Selection Overview

The successful integration of a stepper motor linear actuator in an application is primarily dependent on the screw alignment and subsequent screw runout. If incorrectly mounted, a lead screw assembly will have significantly reduced system life and may be noisy or inaccurate. Thomson methodically straightens all screws prior to assembly to minimize vibration and runout. The Taper-Lock coupling method also was designed to provide a concentric interface and optimize alignment. Proper alignment, end support configuration and lead nut selection are important factors to achieve a well designed installation that will exceed expectations.

1. Select Stepper Motor Linear Actuator Configuration

Determine which of the configurations — rotating screw (MLS), rotating nut (MLN) or actuator (MLA) — the application requires. See pages 6-7 for application examples.

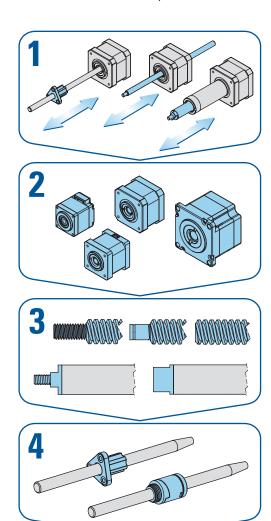
2. Select Motor Size

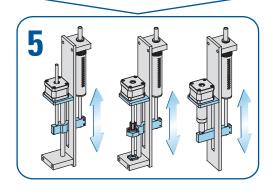
Select the appropriate size based on desired performance, motor frame size, etc. Thomson offers five base models (MLx08, MLx11, MLx14, MLx17 and MLx23) in various motor windings, linear travels and load capacities.

3. Select Lead Screw Configuration and End Machining or End Mounting

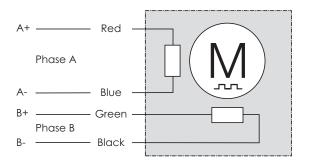
For MLS or MLN, select the lead screw diameter and length with regard to the required stroke of the application and the type of end machining the screw requires. For MLA, select desired lead or travel per step, stroke length and end mounting.

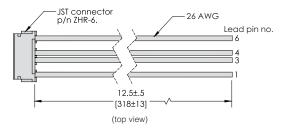
4. Select Nut


For rotating screw (MLS) configurations, choose between various nut mounting styles, materials, and backlash options. Rotating nut (MLN) configurations as default always come in a high performance material, standard backlash nut. As a default, all MLA configurations come with a standard backlash and performance material nut.


5. Mount the Stepper Motor Linear Actuator

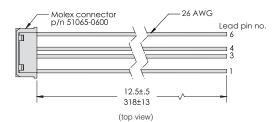
Mount the unit into your assembly. For MLA, use the end mounting installation guidelines shown below.


When installing your load to the end mount of an MLA assembly, always use the dedicated flats to prevent over-torquing and damaging the actuator's internal components.



Wiring and Connectors

Thomson offers standard wiring and connector pin-outs (shown below). However, if you have unique application requirements such as a specific mating connector you'd like to easily plug into, we also offer custom wiring and connectors to match your needs. Just contact us with your request, and we'll find a solution.



MLx08

Pin	Phase	Color
1	A+	Red
2	NA	NA
3	A-	Blue
4	B+	Green
5	NA	NA
6	B-	Black

MLx11

Pin	Phase	Color
1	B-	Black
2	NA	NA
3	B+	Green
4	A-	Blue
5	NA	NA
6	A+	Red

MLx14, MLx17 and MLx23

Lead Color	Phase
Red	A+
Blue	A-
Green	B+
Black	B-

- MLx14, MLx17 and MLx23 motors come standard with flying leads
- 26 AWG lead wires for MLx14
- 22 AWG lead wires for MLx17 and MLx23
- Other lead wire gauges available contact Thomson for more details

Glossary

Accuracy	A measurement of precision. Perfect accuracy, for example, means advancing a lead nut linearly one inch from any point on a screw will always require the exact same number of revolutions.
Axial Load	A load passing through the center axis of the lead screw.
Backdrive	Application of a force on a lead nut to cause rotation of the screw; in essence, converting linear to rotary motion.
Backlash	The axial or radial free motion between the lead nut and lead screw; a measure of system stiffness and repeatability.
Bipolar Motor	Motor with two phases and a single winding per phase (4 lead wires). All Thomson standard stepper motors are bipolar.
Chopper Drive	A constant current stepper motor drive that operates by quickly cycling power on and off, or "chopping."
Column Load	Column loading is the compression load on the screw. This load has a tendency to buckle the screw and is dependent on screw diameter, screw length and type of mounting.
Concentricity	Condition where the median points of two or more radially-disposed features are congruent with the axis (or center point).
Critical Speed	The condition where the rotary speed of the assembly sets up harmonic vibrations. These vibrations are the result of shaft diameter, unsupported length, type of bearing support, lead nut mounting method and/or screw rpm. Vibrations may also be caused by a bent screw or faulty installation alignment.
Drag Torque	The amount of torque required to drive the unloaded lead screw.
Driving Torque	The amount of effort required to turn the lead screw and move the load.
Dynamic Load	Load applied to stepper motor linear actuator assembly while in motion.
Efficiency (Lead Screw)	Expressed as a percentage, the ability of a lead screw assembly to convert torque to thrust with minimal mechanical loss. Thomson lead screws range in efficiency from 35 to 85%.
Efficiency (Motor)	Expressed as a percentage, the motor's ability to turn electrical energy into mechanical energy with minimal thermal loss. Thomson stepper motors range in efficiency from 65 to 90%.
End Fixity or End Bearing Support	How the ends of the lead screw are fixed or supported.
Holding Torque	Torque required to rotate motor shaft while all coils are fully energized with a steady state DC current.
Inertia	The level of rotational resistance of a lead screw or shaft.
Lead	The axial distance a screw travels during one revolution. If thread is 1 start, lead = pitch.
Microstepping	Dividing the motors natural full step by smaller increments. Example: 1.8° step motor microstepped at $64 \times$ will mean that 1 pulse is now $1.8^{\circ}/64 = 0.028^{\circ}$.
Perpendicularity	Condition of a surface, center plane, or axis at a right angle to a plane or axis.
Pitch	Distance measured between adjacent threads of the lead screw - if thread is 1 start, then pitch = lead.
Pulse Rate	The number of pulses per second (pps) applied to the windings of the motor. 1 pulse = 1 step.
Repeatability	A measure of constancy that is directly related to axial backlash. Higher backlash equates to lower repeatability and may be corrected by preloading the lead nut if required.
Resolution	The linear distance the stepper motor linear actuator will actuate the lead nut or screw per input pulse.
Resonance	Vibration occurring when a mechanical system operates within an unstable range.
Runout	Composite tolerance used to control the functional relationship of one or more features of a part to an axis.
Side Load (Radial)	A load applied perpendicular to the lead screw axis. Not recommended for lead screw applications as it will reduce functional life.
Static Load	Static load is the maximum non-operating load capacity above which failure of the motor and/or lead nut occurs.
Straightness	Condition where an element of a surface, or an axis, is in a straight line.
Stroke	The maximum length of extension of a lead nut on the lead screw.
Thrust Force or	Thrust load is loading parallel to and concentric with the centerline of the screw which acts continuously in one
Thrust Load	direction. Thrust loading is the proper method of attaching the load to the lead screw assembly.

Notes

USA, CANADA and MEXICO

Thomson

203A West Rock Road Radford, VA 24141, USA Phone: 1-540-633-3549 Fax: 1-540-633-0294

E-mail: thomson@regalrexnord.com Literature: literature.thomsonlinear.com

FUROPE

United Kingdom Thomson Office 9, The Barns Caddsdown Business Park

Bideford, Devon, EX39 3BT Phone: +44 1271 334 500

E-mail: thomson.europe@regalrexnord.com

Germany Thomson

Nürtinger Straße 70 72649 Wolfschlugen Phone: +49 7022 504 403 Fax: +49 7022 504 405

E-mail: thomson.europe@regalrexnord.com

France Thomson

Phone: +33 243 50 03 30

E-mail: thomson.europe@regalrexnord.com

Italy Thomson

Via per Cinisello 95/97 20834 Nova Milanese (MB) Phone: +39 0362 366406 Fax: +39 0362 276790

E-mail: thomson.italy@regalrexnord.com

Sweden Thomson

Bredbandsvägen 12 29162 Kristianstad Phone: +46 44 590 2400 Fax: +46 44 590 2585

E-mail: thomson.europe@regalrexnord.com

ASIA

Asia Pacific Thomson

E-mail: thomson.apac@regalrexnord.com

China

Thomson

Rm 805, Scitech Tower 22 Jianguomen Wai Street

Beijing 100004

Phone: +86 400 606 1805 Fax: +86 10 6515 0263

E-mail: thomson.china@regalrexnord.com

India

Kollmorgen – Div. of Altra Industrial Motion

India Private Limited

Unit no. 304, Pride Gateway, Opp. D-Mart,

Baner Road, Pune, 411045

Maharashtra

Phone: +91 20 67349500

E-mail: thomson.india@regalrexnord.com

South Korea

Thomson

3033 ASEM Tower (Samsung-dong)

517 Yeongdong-daero

Gangnam-gu, Seoul, South Korea (06164)

Phone: + 82 2 6001 3223 & 3244

E-mail: thomson.korea@egalrexnordcom

SOUTH AMERICA

Brazil

Thomson

Av. João Paulo Ablas, 2970

Jardim da Glória - Cotia SP - CEP: 06711-250

Phone: +55 11 4615 6300

E-mail: thomson.brasil@egalrexnordcom

BIBUS SK, s.r.o Trnavská 31, SK-94 901 Nitra

Tel.: 037/7777 911 Email: sale@bibus.sk Fax.: 037/7777 999 http://www.bibus.sk

Linear Motion. **Optimized.**™