

BAWB 006 -GBR-1 08/2008

Installation and Operation Manual Flexible Coupling

TSCHAN[®]-B BHDD, BHDDV BHDDVV

RINGFEDER POWER TRANSMISSION GMBH

Werner-Heisenberg-Straße 18, D-64823 Groß-Umstadt, Germany · Phone: +49 (0) 6078 9385-0 · Fax: +49 (0) 6078 9385-100 E-mail: sales.international@ringfeder.com

Page

Table of Contents

Chapter

1 Safety Instructions	2
2 Function	
2.1 Intended application	
3 Coupling Marking	
3.1 Elastic buffers	
4 Storage	4
5 Construction	5
6 Technical Data	6
7 Installation	10
7.1 To be observed prior to installation:	10
7.2 Finish Bores	
7.3 Installing of the coupling	12
8 Coupling Alignment	14
8.1 Angular misalignment ΔK_w	15
8.2 Radial misalignment ∆Kr	15
8.3 Axial misalignment	16
8.4 Couplings with enlarged axial clearance	
9 Operation	17
9.1 Check of Direction of Rotation	
10 Maintenance	21
10.1 Inspection and maintenance intervals	
10.2 Wear Inspection on elastic buffers	
10.3 Wear inspection of elastic buffers in couplings with enlarged	
10.4 Replacement of elastic buffers	
11 Disposal	24

1 Safety Instructions

This installation and operation manual (IOM) is an essential component of the coupling delivery. Always keep this manual in a readily accessible place near the coupling. The German version of this manual is the predominant and binding version.

Make sure that all persons being charged with the installation, operation, maintenance and repair of the coupling read and understand this IOM and that all instructions contained herein are carefully observed in order to:

- Avoid danger to life and limb of the user and third parties.
- Ensure the operational safety of the coupling.
- Preclude operation failures and environmental damage due to wrong handling and misuse.

The relevant instructions and regulations regarding safety at work and environmental protection must be observed while transporting mounting and dismounting the coupling.

The coupling may only be operated, mounted, serviced and maintained by authorised and trained personnel.

The user must take into account that the bolting elements of coupling parts may be adversely affected by the heat produced by a brake disk/ brake drum due to the resultant friction. Make sure that the combination of the employed brake lining with the material of the brake disk/ brake drum does not lead to sparks or impermissible thermal growth. The brake disk is normally made of steel, and the brake drum is normally made of cast iron with nodular graphite. In case of any doubt, please consult the supplier!

In the interest of further development, we reserve the right to carry out modifications serving the technical progress.

We do not assume any liability or warranty for any damage resulting from the use of accessories and parts that are not originally manufactured by TSCHAN GmbH.

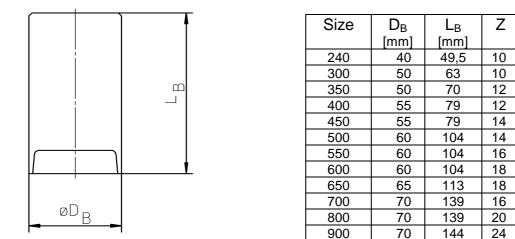
2 Function

The TSCHAN[®]-B BHDD, BHDDV, BHDDVV- coupling is a torsionally flexible, puncture proof claw coupling. It compensates for angular, radial and axial shaft misalignments within defined limits. The coupling transmits torque through elastic buffers loaded in shear. These buffers come in Perbunan (Pb) or polyurethane (Vk), as a standard VkR.

These elastic buffers dampen shocks and torsional vibrations and are resistant to oil. When the intermediate part is removed (BHDD) respectively when the claw ring is pulled back (BHDDV, BHDDVV) it is easily possible to check the rotational direction of the drive. The coupling is suitable for use in every direction of rotation and installation position.

2.1 Intended application

- The coupling must only be operated in normal industrial atmospheres. Since aggressive media may attack the coupling components, screws and elastic buffer rings, they represent a risk for the operational safety of the coupling. Consult TSCHAN GmbH in such cases.
- In order to ensure trouble-free and reliable operation, the coupling has to be sized according to the design specifications, e.g. according to DIN 740, part 2, (or acc. to catalogue TSCHAN[®]-B), with a service factor appropriate for the service conditions.
- Except for the production of a finish bore with keyway, no further modifications are allowed to be carried out on the coupling!
- The coupling shall only be used and operated within the frame of the conditions as defined in the performance or delivery contract.
- Any change in the operation conditions or service parameters requires the verification of the coupling design.


3 Coupling Marking

3.1 Elastic buffers

The elastic buffers are labelled at the front end with: Coupling size and material code (Vk for Polyurethane or Pb for Perbunan)

Pb82 = Perbunan with a hardness of approx. 82 Shore(A) / black VkR = Polyurethane with a hardness of approx. 93 Shore(A) / red VkW = Polyurethane with a hardness of approx. 96 Shore(A) / white

The table contains the size and quantity Z for each coupling:

In case of particularly high balance requirements, the elastic buffers are weight balanced per set.

Do not mix these buffers with those of other couplings and do not replace single buffers of a set.

4 Storage

On receipt of the goods, immediately check that all parts are on hand and are as ordered. Shipping damage and / or missing parts have to be reported in writing.

The coupling parts can be stored as delivered in a dry place under roof at normal ambient temperatures for a period of 6 months. Storage for a longer time requires the application of a long-term preservation (please consult TSCHAN GmbH). The elastic intermediate ring must not be exposed to ozonic media, direct sun light or intensive light sources with UV-light. The relative humidity should not exceed 65%. If the parts are properly stored, the quality characteristics of the elastic intermediate ring remain almost unchanged for up to three years.

5 Construction

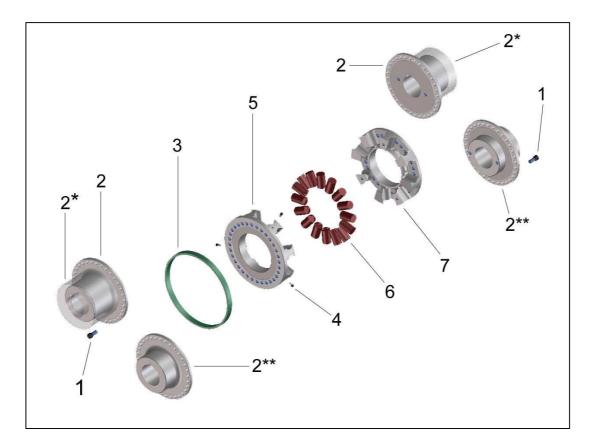


Fig. 1 Construction TSCHAN®-B BHDD, BHDDV, BHDDVV

- 1 Cheese head screws DIN 912
- 2 Flanged hub BHDD part 411
- 2* Flanged hub BHDD reinforced part 424
- 2** Covert flanged hub BHDDV part 423
- 3 Retaining ring part 408 / GRP
- 4 Locking screw
- 5 Claw ring part 434 with collar for retaining ring
- 6 Elastic buffers part 043
- 7 Claw ring part 434

The different cpoupling designs result from the combination of the various hub types:

- BHDD = 2 or 2* with 2 or 2*
- BHDDV = 2 or 2* with 2 **
- BHDDVV = 2** with 2**

Note:

The flange hubs and claw rings are bolted to each other when supplied. Balanced parts are match marked to each other.

6 Technical Data

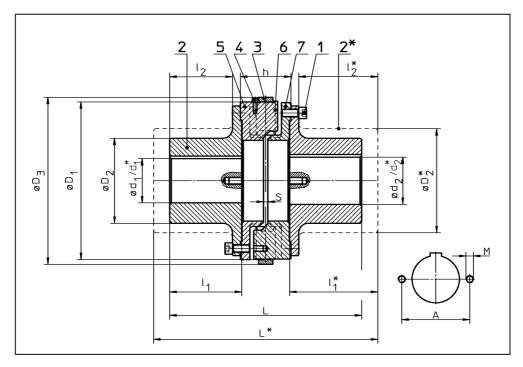


Fig. 2 TSCHAN[®]-B BHDD

Table 1	Technical data TSCHAN [®] -B BHDD

		d_1/d_2									Puller	holes	
Size		d_1^*/d_2^*	D ₁	D ₂ , D ₂ *	D_3	h	L, L*	I_1, I_1^*	$ _2, _2^*$	S	Μ	А	m
BHDD	D	max		,				-					
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		[mm]	[kg]
BHDD	240	85	240	140	260	104	360	130	113	10			58,8
BHDD*	240	100	240	150	200	104	400	150	133	10			63,6
BHDD	300	110	300	170	320	124	438	160	139	10			108,6
BHDD*	300	135	300	200	520	124	490	186	165	10			124,6
BHDD	350	120	350	180	370	124	478	180	159	10	M16	145	139,3
BHDD*	330	170	330	250	570	124	580	231	210	10	IVITO	145	188,4
BHDD	400	140	400	210	420	138	512	190	167	10	M20	170	203,4
BHDD*	400	190	400	280	420	150	610	239	216	10	10120	170	262,5
BHDD	450	170	450	250	470	138	532	200	177	10	M20	210	266,0
BHDD*	430	205	450	300	470	150	610	239	216	10	IVIZ0	210	316,8
BHDD	500	180	500	270	530	160	608	228	199	14	M24	215	380,1
BHDD*	500	225	500	330	550	100	710	279	250	14	10124	215	457,6
BHDD	550	200	550	280	580	160	608	228	199	14	M24	245	426,8
BHDD*	550	240	550	350	500	100	710	279	250	14	1012-4	243	519,7
BHDD	600	235	600	330	630	170	678	258	229	14	M24	290	595,8
BHDD	000	265	000	385	030	170	760	299	270	14	10124	230	689,1
BHDD	650	250	650	350	680	182	688	258	225	14	M27	310	689,6
BHDD*	030	265	050	385	000	102	760	299	261	14		310	762,6
BHDD	700	260	700	370	740	200	786	298	263	14	M30	315	912,4
BHDD*	100	310	700	450	740	200	880	345	310	14	10130	515	1076,2
BHDD	800	320	800	450	840	200	866	338	303	14	M30	380	1350,9
BHDD*	000	340	000	490	040	200	920	365	330	14	10130	300	1461,3
BHDD	900	340	900	480	940	214	878	338	297	14	M30	400	1598,4
BHDD*	300	400	300	590	340	214	1000	399	358	14	10130	400	1945,3

Weight m with unbored hubs.

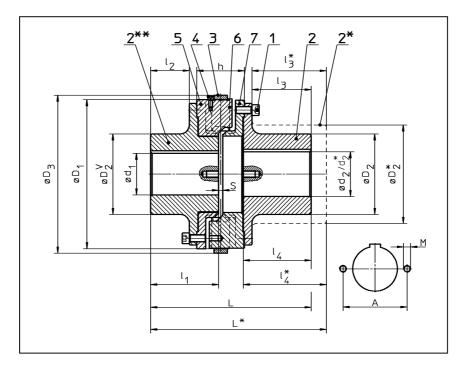


Fig. 3 TSCHAN[®]-B BHDDV

Table 2 Tecl	hnical data	TSCHAN [®] -B E	SHDDV
--------------	-------------	--------------------------	-------

			d _{2,}												Puller	holes	
Size		d ₁	d ₂ *	D ₁	D_2^{V}	D _{2,}	D_3	h	L,	I ₁	l ₂	l ₃	I ₄ ,	S	Μ	Α	m
BHDD	V	max	max			D_2^*			L*				l ₄ *				
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		[mm]	[kg]
BHDDV	240	85	85	240	140	140	260	104	315	130	68	113	130	10			56,4
BHDDV*	240	00	100	240	140	150	200	104	335	100	00	133	150	10			61,1
BHDDV	300	110	110	300	170	170	320	124	384	160	85	139	160	10			105,0
BHDDV*	000	110	135	000	170	200	020	12-1	410	100	00	165	186	10			121,0
BHDDV	350	120	120	350	180	180	370	124	424	180	105	159	180	10	M16	145	138,1
BHDDV*	000		170			250	0.0		475			210	231				187,2
BHDDV	400	140	140	400	210	210	420	138	451	190	106	167	190	10	M20	170	201,9
BHDDV*		-	190		-	280	-		500			216	239	_	-	_	261,0
BHDDV	450	170	170	450	250	250	470	138	471	200	116	177	200	10	M20	210	264,2
BHDDV*			205			300			510			216	239				315,0
BHDDV BHDDV*	500	180	180 225	500	270	270 330	530	160	539 590	228	130	199 250	228 279	14	M24	215	376,1
BHDDV			225			280			539			199	279				453,6 428,0
BHDDV BHDDV*	550	200	200	550	280	350	580	160	590	228	130	250	279	14	M24	245	428,0 520,9
BHDDV			235			330			604			229	279				595,8
BHDDV*	600	235	265	600	330	385	630	170	645	258	155	270	299	14	M24	290	689,1
BHDDV			250			350			609			225	258				689,6
BHDDV*	650	250	265	650	350	385	680	182	650	258	146	261	299	14	M27	310	762,6
BHDDV			260			370	- 10		698			263	298				910,4
BHDDV*	700	260	310	700	370	450	740	200	745	298	175	310	345	14	M30	315	1074,3
BHDDV	000	200	320	000	450	450	0.40	200	778	220	045	303	338	44	Mag	200	1350,9
BHDDV*	800	320	340	800	450	490	840	200	805	338	215	330	365	14	M30	380	1461,3
BHDDV	900	340	340	900	480	480	940	214	784	338	203	297	338	14	M30	400	1598,6
BHDDV*	900	540	400			590			845			358	399	14	10130	400	1945,6

Weight m with unbored hubs.

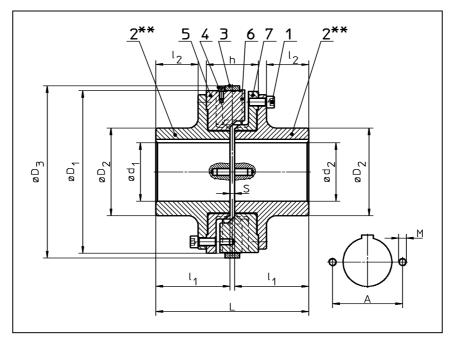


Fig. 4 TSCHAN[®]-B BHDDVV

												Puller	holes	
Size		d ₁	d _{2,}	D ₁	D ₂	D_3	h	L	I ₁	I_2	S	Μ	А	m
BHDD	V	max	max											
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		[mm]	[kg]
BHDDVV	240	85	85	240	140	260	104	270	130	68	10			53,9
BHDDVV	300	110	110	300	170	320	124	330	160	85	10			101,4
BHDDVV	350	120	120	350	180	370	124	370	180	105	10	M16	145	136,9
BHDDVV	400	140	140	400	210	420	138	390	190	106	10	M20	170	200,3
BHDDVV	450	170	170	450	250	470	138	410	200	116	10	M20	210	262,3
BHDDVV	500	180	180	500	270	530	160	470	228	130	14	M24	215	372,1
BHDDVV	550	200	200	550	280	580	160	470	228	130	14	M24	245	429,2
BHDDVV	600	235	235	600	330	630	170	530	258	155	14	M24	290	595,8
BHDDVV	650	250	250	650	350	680	182	530	258	146	14	M27	310	689,6
BHDDVV	700	260	260	700	370	740	200	610	298	175	14	M30	315	908,5
BHDDVV	800	320	320	800	450	840	200	690	338	215	14	M30	380	1350,9
BHDDVV	900	340	340	900	480	940	214	690	338	203	14	M30	400	1598,9

Weight m with unbored hubs.

Table 4Technical data:

			Stand	dard		For couplings with enlarged axial clearance:							
Size	5	Pb	82	Vk	R	Pb	82	VkR					
BHDD	n _{max} [min ⁻¹]	T _{Knom} [Nm]	T _{Kmax} [Nm]	T _{Knom} [Nm]	T _{Kmax} [Nm]	T _{Knom} [Nm]	T _{Kmax} [Nm]	T _{Knom} [Nm]	T _{Kmax} [Nm]				
240	4400	1000	3000	2500	7000	900	2700	2170	6500				
300	2750	2000	6000	6000	17500	1850	5550	4500	13500				
350	2650	3400	10200	10000	31500	3130	9400	7670	23000				
400	2100	5050	15200	16000	48000	4630	13900	11330	34000				
450	2000	6850	20500	21000	62000	6270	18800	15270	45800				
500	2500	10300	30900	28500	85000	9340	28300	23000	69000				
550	2350	13200	39600	45000	135000	12100	36300	29500	88500				
600	2250	16500	49500	55000	163000								
650	1950	19700	59000	65000	176000								
700	2150	26700	80000	90000	275000								
800	2000	39000	118000	120000	380000								
900	1850	54000	162500	180000	550000								

The torques T_{Knom} and T_{Kmax} . are valid for:

- Ambient temperatures of -30° up to $+30^{\circ}$ for Polyu rethane (Vk).
- Ambient temperatures of -30° up to $+60^{\circ}$ for Perbu nane (Pb).
- Operation within the range of the specified alignment values.

For determining the size of the coupling according to DIN 740, part 2, (or to catalogue TSCHAN[®]-B) various factors have to be taken into account:

- the temperature factor Sv in case of higher temperatures,
- the start-up factor Sz depending on the frequency of starts,
- the shock factor S_A, S_L depending on the service conditions.

For circumferential speeds above 22 m/s, referred to the nominal size of the coupling, we recommend balancing the coupling hubs

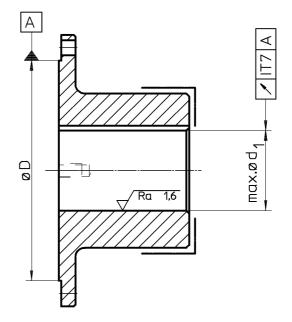
7 Installation

7.1 To be observed prior to installation:

- Danger of injuries!
- Disconnect the drive before carrying out any work on the coupling!
- Secure the drive against unintentional re-start and rotation!
- Incorrectly tightened bolts can cause serious personal injuries and property damages!
- Assemble the coupling outside of the danger zone. Take care that suitable transportation means are at disposal and that the transportation ways are free of obstacles.
- In compliance with accident prevention regulations, you are obliged to protect all freely rotating parts by means of permanently installed guards/ covers against unintentional contact and falling down objects.
- As a minimum, the covers have to fulfil the requirements of protection type IP2X.
- The covers have to be designed to prevent dust from depositing on the coupling.
- The cover must not contact the coupling or impair the proper function of the coupling.
- Make sure that the speeds, torques and ambient temperatures as stated in chapter 6 'Technical Data' are not exceeded.
- The maximum permissible bore diameters must not be exceeded.
- Check whether the shaft-hub connections safely transmit the occurring operating torques.
- The standard tolerance of TSCHAN for finish bores is fit H7.
- Standard keyways comply with DIN 6885, sheet 1.
- Check the dimensions and tolerances of shafts, hub bores, keys and keyways.
- Set screws as required.

7.2 Finish Bores


The following procedure has to be observed to produce a finish bore in a coupling hub:


- Clean and remove all preservatives from the coupling hub.
- Mount the coupling hub in between the surfaces marked with *Γ* and carefully align the coupling hub according to the centering diameter øD.
- The values for $ød_{1max}/ød_{1}*_{max}$ and $ød_{2max}/ød_{2}*_{max}$ resp., listed in table 1, 2 and 3 are valid for keyed connections according to DIN 6885/1 and must not be exceeded.
- Select the bore fit so that an interference fit such as H7/m6 results when mating it with the shaft tolerance.
- Axially lock the hub, for example by means of a setscrew on the back of the hub above the keyway.

Consult TSCHAN GmbH in case of other shaft-hub connections.

- The stated maximum bore diameters are valid for keyed connections according to DIN 6885/1 and must not be exceeded.
- If these values are exceeded, the coupling can break.
- Flying off coupling fragments are a danger to life!!

7.3 Installing of the coupling

- Remove the locking screws (Fig. 5, Pos. 1) at the retaining ring and put this onto the shaft end (Fig. 5, Pos. 2).
- Take out the elastic buffers (Fig. 5, Pos. 3).
- Prior to installation, carefully clean the bores of the coupling hubs and the shaft ends. The surfaces must be clean, dry and free of grease.
- For larger couplings use suitable mounting tools and hoisting devices such as cranes or pulley blocks.
- Mount the coupling hubs in the proper position on the shaft ends (Fig. 5, Pos.2).
- In case of vertical assembly the hub with the rteaining ring must be positioned upward.

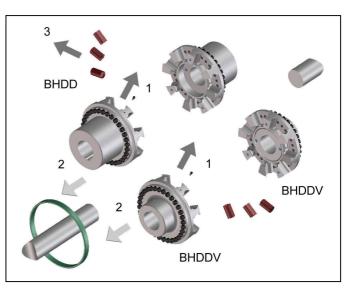


Fig. 5

Note:

To facilitate mounting, the hubs can be uniformly heated to 80° to 120° .

Warning!

- Always wear heat-resistant gloves to protect yourself against injuries due to hot coupling components!
- Mount the hubs in such a manner that the shaft end is flush with the inner bore openings (Fig. 6).
 Observe deviant agreements, which may exist.
- When tightening setscrews, secure them with an adhesive, such as e.g. Loctite 222, to prevent the screws from working loose and dropping out

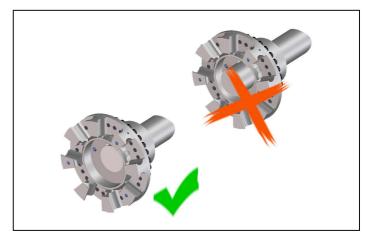
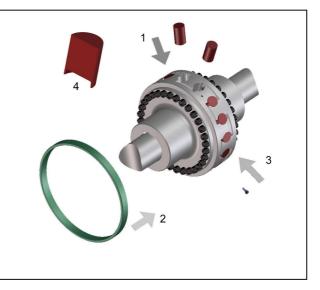



Fig. 6

ATTENTION! Let the hot hubs cool down to ambient temperature, before inserting the buffers.

- Push together the shaft ends with the mounted coupling halves while observing the mounting dimension 'h' acc. to table 8 (Fig. 10).
- To facilitate mounting, the elastic buffers can be coated with a lubricant (for ex. talcum for Perbunan Pb, or commercial roller bearing grease for polyurethane Vk).
- Mount the buffers with the hollow pointing inwards (Fig. 7, Pos. 4).
- Push the retaining ring (Fig. 7, Pos. 2) to the shoulder of the claw ring in such a way that it is centric to the elastic buffers.
- Fix the retaining ring with the locking screws on the claws of the claw ring. Tighten the lolocking screws (Fig. 7, Pos. 3) with the torque MA as per table.

• Align the coupling in accordance with the instructions given in chapter 8 'Coupling Alignment'.

Table 5	Tightening torque M _A of locking screws:
---------	---

BHDD Size	240	300	350	400	450	500	550	600	650	700	800	900
DIN 912 8.8	M10	M10	M10	M12								
M _A [Nm]	49	49	49	86	86	86	86	86	86	86	86	86

8 Coupling Alignment

- Danger of injuries!
- Disconnect the drive before carrying out any work on the coupling.
- Secure the drive against unintentional re-start and rotation!
- Note:
- Accurate alignment of the coupling prolongs the lifetime of the elastic buffers.
- It is of utmost importance to observe the recommended alignment values. Exceeding the permissible misalignment values results in coupling damages and failures!
- When aligning the cold equipment take into account the expected thermal growth of the components, so that the permissible misalignment values for the coupling are not exceeded in operation.
- Be aware that the coupling under misalignment imposes restoring forces on the adjacent shafts and bearings. Take into account that the larger the misalignment, the greater the restoring forces will be
- The maximum permissible misalignment values stated in the tables 6 to 8 are guiding values. It is advisable not to fully utilize these values when aligning the equipment in order to have sufficient reserves for thermal growth, foundation settlings etc. during operation.
- In special applications involving high demands on quiet running characteristics or higher speeds, alignment accuracies of ≤ 0.1 mm may be necessary for the three misalignment levels.
- If the coupling is fitted into a closed housing or guard, so that re-alignment at a later point
 of time is no longer possible, make sure that the geometry and fitting accuracy of the
 contact faces ensure precise alignment of the shafts within the stated tolerances during
 operation.

8.1 Angular misalignment ΔK_w

- Measure one complete rotation (360°) on the face of the outer diameter. Determine the largest deviation Kw1 and the smallest deviation K_{w2} (Fig. 8).
- Calculate the angular misalignment: $\Delta K_w = K_{w1} - K_{w2}.$
- The values according to table 6 are valid for a reference speed of 1500 rpm

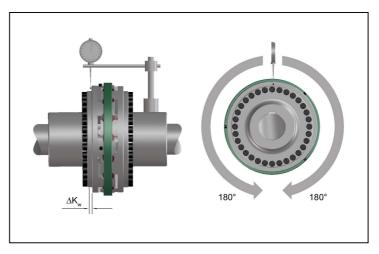


Fig. 8

Table 6Maximum permissible angular misalignment values:

Size	240	300	350	400	450	500	550	600	650	700	800	900
$\Delta K_{w max}$ [mm]	1,0	1,0	1,0	1,0	1	1,0	1,0	1,0	1,25	1,25	1,25	1,25

8.2 Radial misalignment ΔK_r

- Measure one complete revolution (360°). Determine the largest deviation K_{r1} and the smallest deviation K_{r2} (Fig. 9).
- Calculate the radial misalignment ΔK_r = 0.5 x (K_{r1} - K_{r2}). Observe the preceding sign of the measured values.
- The values according to table 7 are valid for a reference speed of 1500 rpm.

Table 7Maximum permissible radial misalignment values:

Größe	240	300	350	400	450	500	550	600	650	700	800	900
$\Delta K_{r max}$ [mm]	0,25	0,30	0,35	0,35	0,40	0,50	0,55	0,55	0,55	0,55	0,65	0,70

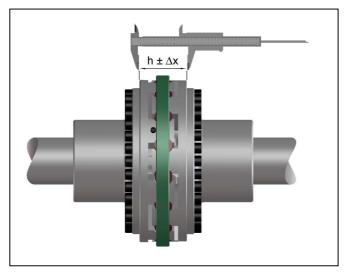
8.3 Axial misalignment

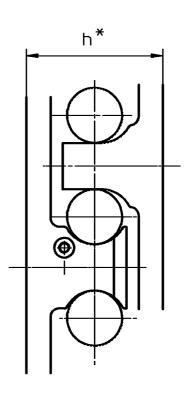
- Measure the axial flange distance 'h' according to fig. 10.
- When aligning observe the flange distance dimension h with the max. permissible tolerance x according to table 8.

In operation, twice the misalignments which may occur due to, e.g., thermal growth are permissible at maximum.

ATTENTION!

If larger axial misalignments are expected in operation, contact TSCHAN GmbH.




Fig. 10

Size	240	300	350	400	450	500	550	600	650	700	800	900
h [mm]	104	124	124	138	138	160	160	170	182	200	200	214
∆x [mm]	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,7	0,7	0,7	0,7

Table 8Recommended axial alignment values:

8.4 Couplings with enlarged axial clearance

Couplings with straight claw parts in a claw ring allow larger axial clearances at reduced coupling torques. Set the axial dimension 'h' as specified in the order-related documentation and layout drawing! As the elastic buffers are not enclosed by the claw geometry on one side, larger torsion angles result when torque is applied and at displacement of the coupling halves. Make sure to observe the max. permissible buffer wear for this design according to Table 13!

If the coupling is operated at speeds above the reference speed of 1500 rpm, the recommended alignment values stated in the tables have to be reduced accordingly.

Example for coupling size BHDD-500 with an operation speed of 1800 rpm:

Ratio of reference speed/ operation speed = 1500/1800=5/6.

Alignment values for 1500 rpm according to the tables: $\Delta K_w = 1.0$ mm $\Delta K_r = 0.5$ mm $\Delta x = 0.5$ mm

 $\begin{array}{ll} \text{New alignment values for 1800 rpm :} \\ \Delta K_{w}\text{-new} = \Delta Kw \ x \ 5/6 = 1.0 \text{mm } x \ 5/6 \\ \Delta K_{r}\text{-new} = \Delta Kr \ x \ 5/6 = 0.5 \text{mm } x \ 5/6 \\ \Delta x\text{-new} = \Delta X \ x \ 5/6 = 0.5 \text{mm } x \ 5/6 \\ \end{array} \qquad \begin{array}{ll} \Delta K_{w}\text{-new} = 0.83 \text{mm} \\ \Delta K_{r}\text{-new} = 0.41 \text{mm} \\ \Delta x\text{-new} = 0.41 \text{mm} \\ \end{array}$

9 Operation

When operating the coupling, its specific technical data have to be carefully observed (see chapter 6 'Technical Data'). These values must never be exceeded without the prior written approval by TSCHAN GmbH.

In order to ensure trouble-free and reliable performance of the coupling, the coupling has to be designed according to the selection specifications, e.g. according to DIN 740, part 2, (or acc. to catalogue TSCHAN[®]-B), with a service factor appropriate to the service conditions. Any change in the service conditions or service parameters always necessitates the verification of the coupling design.

- Danger of injuries!
- Disconnect the drive before carrying out any work on the coupling!

- Improperly tightened screws may cause parts to fly off leading to most serious personal injuries and property damages!
- Before putting the coupling into operation, check the alignment and all screwed connections for correct tightening torque and firm fit!
- Before starting up the equipment, install all protective guards in order to avoid unintentional contact with freely moving or rotating parts..
- The covers have to comply with protection type IP2X as a minimum.
- The cover shall be designed to prevent dust from depositing on the coupling parts.
- The cover must not touch the coupling and must not impair the proper function of the coupling.

While operating the coupling, pay attention to:

- Changes in operating noises
- Vibrations
- Lost parts

Attention!

- Disconnect the drive immediately, if any irregularities are observed while operating the coupling!
- Identify the cause for the problem using table 9 "Operation Faults and Possible Causes" and correct the fault.

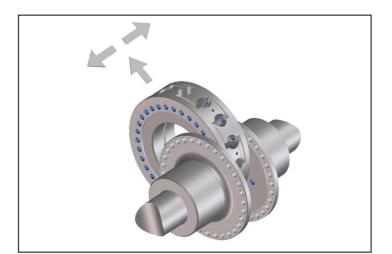
The listed problems are some examples to assist you in troubleshooting.

• All the machinery components and operation modes have to be considered for the determination and correction of faults!

Trouble	Cause	Risk Warning	Correction
Irregular run- ning noises/ vibrations	Alignment fault	Considerable increase of coupling tempera- ture. Premature wear of elastic buffers. In- creased reaction forces act on con- nected machines.	 Disconnect drive Remove cause for alignment fault Re-align coupling Inspect elastic buffers for wear
	Elastic buffers worn out	Coupling claws strike against each other. Spark formation, claw fracture, increased re- action forces	 Disconnect drive Check coupling components for damages and replace parts, if necessary Replace elastic buffers
	Unbalance	Considerable increase in coupling tempera- ture. Premature wear of elastic buffers. In- creased reaction forces act on con- nected machines.	 Disconnect drive Verify balance state of plant components and correct it, if necessary Inspect elastic buffers for wear
	Loose screw con- nections	Flying off parts can cause serious injuries and considerable damages	 Disconnect drive Check coupling parts for damages, replace parts, if necessary Verify alignment of coupling Tighten screws to the specified tightening torque and secure them against working loose, if necessary Inspect elastic buffers for wear

Table 9Operation Faults and Possible Causes:

Trouble	Cause	Risk Warning	Correction
Premature wear of elas- tic buffers	Alignment fault Unaccept- able tem- peratures Contact with aggressive products	Considerable increase in coupling tempera- ture. Increased reac- tion forces act on con- nected machines. Material properties of elastic buffers change. The torque transmis- sion capability is ad- versely affected Material properties of elastic buffers change. The torque transmis- sion capability is ad- versely affected.	 Disconnect drive Remove cause for alignment fault Re-align coupling Inspect elastic buffers for wear Disconnect drive Replace elastic buffers Re-align coupling Adjust ambient temperature Disconnect drive Check coupling parts for damages and replace parts, if necessary Replace elastic buffers Verify alignment of coupling Prevent contact with aggressive
		Considerable increase in coupling tempera- ture. Premature wear of elastic buffers. In- creased reaction forces act on con- nected machines.	 Prevent contact with aggressive products Disconnect drive Analyse and eliminate cause for torsional vibrations Check coupling parts for damages and replace parts, if necessary Replace elastic buffers and consult TSCHAN GmbH concerning eventual use of another Shore-hardness Verify coupling alignment
Claw break- age	Wear limit of elastic buffers ex- ceeded ===> con- tact of claws	Coupling is destroyed. Connected machines can be affected, too.	 Disconnect drive Replace coupling Inspect the elastic buffers for wear at shorter intervals
	Overload due to too high torque	Coupling is destroyed. Connected machines can be affected, too.	 Disconnect drive Verify coupling design in cooperation with TSCHAN Bentiate coupling Install larger coupling, if neces- sary


9.1 Check of Direction of Rotation

- Danger of Injuries!
- Disconnect the drive before carrying out any work on the coupling!
 - Secure the drive against unintentional re-start and rotation!
- Improperly tightened screws may cause parts to fly off what leads to most serious personal injuries and property damages!

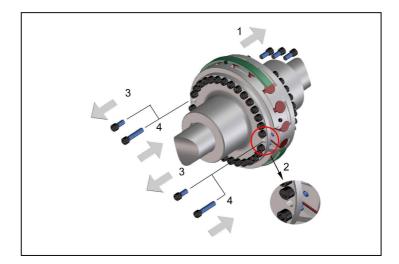
Coupling type BHDD:

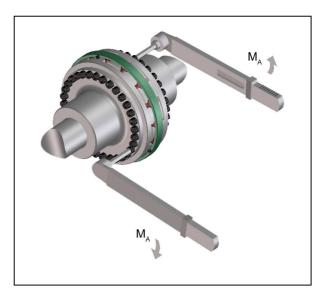
- Loosen the screws (Fig. 11, Pos. 1), at the circumference of the retaining ring and push it backward (Fig. 11, Pos. 2).
- Take out the elastic buffers (Fig. 11, Pos. 3).
- Remove the claw rings (part 434) from the centering seat of the flange hubs (part 411 and 424 resp.) (Fig. 11) and push them together.
- Take out the claw rings.
 For larger couplings use appropriate mounting tools and lifting devices such as cranes or pulley blocks.

The coupled machines can now be easily lifted out vertically without having to move them axially.

Coupling Types BHDDV and BHDVV:

- Loosen the screws (Fig. 12, Pos. 1) at the circumference of the retaining ring and push the ring backward (Fig. 12, Pos. 2).
- Take out the elastic buffers (Fig. 12, Pos. 3).
- Remove all the cheese head screws from one coupling half (Fig. 12, Pos. 1). This separates the claw ring from the flange hub.
- Remove the cheese head screws from the other coupling half which are located opposite the front side threads in the claws of the loosened ring (Fig. 12, Pos. 2 and 3).




Fig. 12

- Use longer clamp screws (Fig. 12, Pos. 4) to axially remove the loosened claw ring from its centering seat. Make sure there is a gap between the claw ring and the flange hub so that these parts no longer contact each other.
- **BHDDV and BHDDVV:** After having checked the direction of rotation, remove the clamp screws and fasten the claw ring to the flange hub again by using the cheese head bolts.
- **BHDD:** Place the claw rings in the proper positions as marked.
- Make sure that the parts do not get canted at the centering seat while mounting them.
- Make sure that the parts are re-assembled in their original position.

Attention !

The contact surfaces of the claw rings and flange hubs must be clean, dry and free of grease.

- Balanced parts are match-marked to each other.
- Slightly tighten the cheese head bolts in a uniform manner.
- Tighten the bolts with the tightening torque specified in Table 10 (Fig. 13).
- Mount new elastic buffers. To facilitate mounting, the elastic buffers can be coated with a lubricant before installing them (e.g. commercial roller bearing grease for buffers made of Polyurethane Vk, or talcum for Perbunan Pb).
- Check the alignment of the coupling in accordance with the instructions given in chapter 8: 'Coupling Alignment'.
- Advance the retaining ring (Fig. 7, Pos. 2) up to the contact face at the claw ring, so that the ring is seated centrically above the elastic buffers.
- Use the locking screws to fasten the retaining ring to the claws of one of the claw rings. Tighten the screws (Fig. 7, Pos. 3) with the tightening torque M_A specified in Table 5.

Table 10Tightening torque MA for claw ring screws:

Size	240	300	350	400	450	500	550	600	650	700	800	900
DIN 912-10.9	M16	M16	M18	M20	M20	M24	M24	M24	M27	M30	M30	M30
M _A [Nm]	225	225	300	440	440	700	700	700	950	1400	1400	1400

10 Maintenance

The flexible coupling TSCHAN[®]-B BHDD, BHDDV, BHDDVV only requires little maintenance during operation. The elastic buffer ring is subject to wear. The time at which the wear limit of the elastic buffers is reached depends on the service parameters and application conditions

On the occasion of routine inspections or maintenance of the equipment, check:

• Alignment of coupling,

- State of elastomer
- Firm fit of all fastening elements
- Lost parts
- Remove dust deposits from coupling parts and buffers

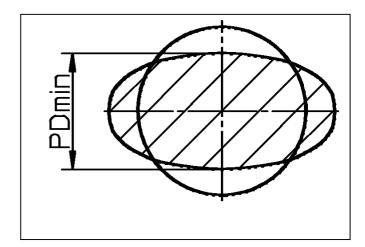
10.1 Inspection and maintenance intervals

- Danger of injuries!
- Disconnect the drive before carrying out any work on the coupling!
- Secure the drive against unintentional re-start and rotation!

Perform wear checks, inspections and maintenance operations according to the intervals stated in table 11. If excessive wear is already detected on the occasion of the first inspection, check whether the cause for the problem is listed in table 9 "Operation faults and possible causes". In such a case the inspection intervals must be adapted to the prevailing service conditions. Special operation conditions may necessitate to perform inspections and maintenance operations at shorter intervals than stated.

	Industry									
1st inspection	after 4 weeks	visual inspection and wear check of elastomer								
1st mainte-	after 6 months	visual inspection and wear check of elastomer								
nance										
2nd mainte-	after 6 months	visual inspection and wear check of elastomer								
nance		removal of dust deposits from coupling components								
each further	every 12 months	visual inspection and wear check of elastomer								
maintenance		removal of dust deposits from coupling components								
		Mines								
1st inspection	after 4 weeks	visual inspection and wear check of elastomer								
1st mainte-	after 6 months	visual inspection and wear check of elastomer								
nance										
2nd mainte-	after 6 months	visual inspection and wear check of elastomer								
nance		removal of dust deposits from coupling components								
each further	every 6 months	visual inspection and wear check of elastomer								
maintenance		removal of dust deposits from coupling components								

Table 11 Inspection and Maintenance Intervals


On the occasion of maintenance operations on the drive equipment, however, after 3 years at latest:

- Replace the elastic buffers.
- If the wear limit has been reached or exceeded, replace the buffers immediately, irrespective of the inspection intervals of the equipment.
- Check coupling alignment.
- Remove dust deposits from coupling components and buffers

10.2 Wear Inspection on elastic buffers

- If the elastic buffers are considerably deformed or have cracked, the buffers must be replaced.
- Check the wear of the buffers by measuring the minimum diameter of the individual buffers.
- If the coupling has a distinct torsional backlash, or if the minimum buffer thickness (PD_{min}, Fig. 14) according to table 12 is reached, we recommend to replace the elastic buffers.

Table 12	Min. buffer thickness PD _{min} :

Size	240	300	350	400	450	500	550	600	650	700	800	900
PD _{min} [mm]	37	47	47	52	52	57	56	56	61	66	66	66

Fig. 14

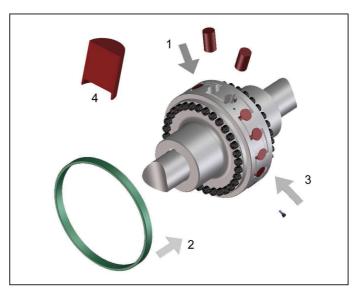
10.3 Wear inspection of elastic buffers in couplings with enlarged axial clearance

Couplings with straight claw parts in a claw ring allow larger axial clearances at reduced coupling torques (please see 8.4). As the elastic buffers are not enclosed by the claw geometry on one side, larger torsion angles result when torque is applied and at displacement of the coupling halves. Make sure to observe the max. permissible buffer wear for this design according to Table 13!

Table 13 Mi	n. buffer thickness PD _{mi}	for couplings	s with enlarged axial clearance:
-------------	--------------------------------------	---------------	----------------------------------

Size	240	300	350	400	450	500	550	600	650	700	800	900
PD _{min} [mm]	39	49	49	54	54	59	59	59	64	69	69	69

Upon completion of the wear measurement, re-install all the protective devices and covers



10.4 Replacement of elastic buffers

Danger of injuries! Disconnect the drive before carrying out any work on the couplina! Secure the drive against unintentional re-start and rotation!

- At first remove the cheese head screws (Fig. 15, pos. 3) and then the retaining ring (Fig. 15, pos. 2).
- Remove the buffers (Fig. 15, pos. 1).
- To facilitate mounting, the new elastic buffers can be coated with a lubricant before installing them (e.g. talcum for Perbunan Pb, or commercial roller bearing grease for Polyurethane Vk)
- Mount new buffers of correct size with • the hollow pointing inwards (see Fig. 15, pos. 4).
- Advance the retaining ring (Fig. 15, pos. 2) up to the contact face at the claw ring, so that the ring is seated centrically above the elastic buffers.

Fasten the retaining ring with the locking screws at the claws of one of the claw rings. Tighten the screws (Fig. 7, pos. 3) with the tightening torgue M_A specified in Table 5.

Align the coupling according to the instructions given in chapter 8 'Coupling Alignment'

Warning!

Before putting the equipment into service, all safety guards must be installed to prevent unintentional contact with freely rotating parts.

The covers have to fulfil the requirements of protection type IP2X as a minimum.

The covers have to be designed to prevent dust from depositing on the coupling parts.

The cover must not touch the coupling and impair the proper operation of the coupling

We do not assume any responsibility or warranty for any damages resulting from the use of accessories or spare parts, which have not originally been manufactured by TSCHAN GmbH.

11 Disposal

The waste disposal has to occur according to the specific regulation country.

BIBUS SK. s.r.o Trnavská 31, SK-94 901 Nitra

bawb006- gbr-1

Tel.: 037/ 7777 911 Email: sale@bibus.sk Fax.: 037/ 7777 999 http://www.bibus.sk