

DSP1* DIRECTIONAL VALVES, PILOT OPERATED, SOLENOID OR HYDRAULIC (DSC1*) ACTUATED

SUBPLATE MOUNTING DS*10 ISO 4401-10 DS*11 ISO 4401-10 oversize ports

p max 350 barQ max 1600 l/min

 The DSP10 and DSP11 are 4-ports directional valves, pilot operated, solenoid actuated, with mounting surface according to ISO 4401-10 standards. The DS*11 valves have ports Ø48.

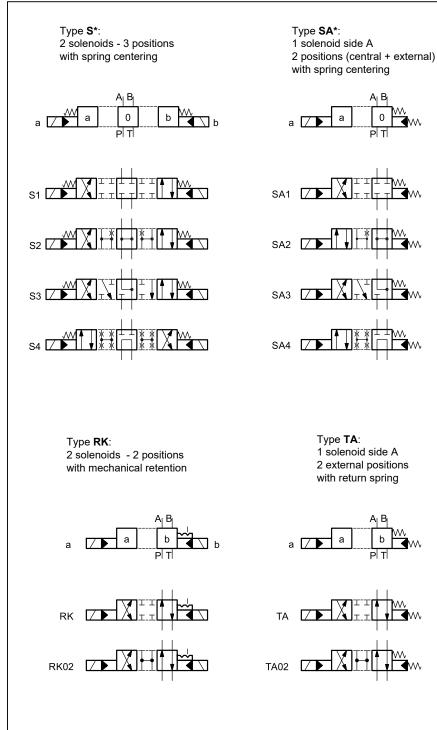
- The directional valves DSC10 and DSC11 are the versions with hydraulic actuation.
- They are available with different spool types (see point 2) and with some options for the opening control.

 The DSP* valves are available with internal or external pilot supply and internal or external drain. A version with internal pilot supply with fixed pressure reducing valve is also available.

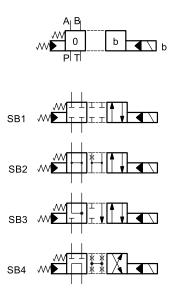
PERFORMANCES

(obtained with mineral oil of viscosity of 36 cSt at 50°C)

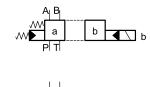
		DS*10	DS*11	
Maximum operating pressure - ports P - A - B (standard version) - port T (external drainage)	bar	350 350	350 350	
Maximum flow rate from port P to A - B - T	l/min	1100	1600	
Ambient temperature range	°C	-20 /	/ +50	
Fluid temperature range	°C	-20 /	[′] +80	
Fluid viscosity range	cSt	10 ÷	400	
Fluid contamination degree	а	ccording to ISO 4406:1999 c	ass 20/18/15	
Recommended viscosity	cSt	25		
Mass: DSP DSC	kg	40.8 39.5	38 36.7	

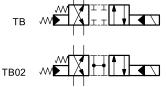

OPERATING PRINCIPLE

٦

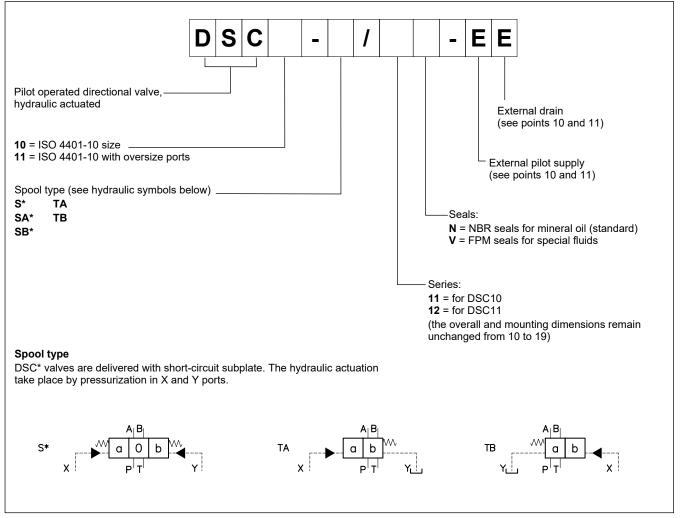

1 - IDENTIFICATION CODE FOR SOLENOID ACTUATED DIRECTIONAL VALVES

	P		-		/			-			1		/		K	1	1			
Pilot operated directio	nal valv	ve,																		
																0	mit fo	or ov	erride: erride int	
10 = ISO 4401-10 size	-																		(standa ial overri	
11 = ISO 4401-10 with	ı oversi	ze port	S																see poin	
/	-)																			
Spool type (see point S * TA	2) —																			
SA* TB																			connectio	on:
SB* RK*																-	or co EN 1		tor 1-803	
Series:															(e	x D	IN 43	3650)	
21 = for DSP10																				
12 = for DSP11 (the overall dimension	s do no	t chang	ge within	the sa	ame	e ten)														
													Pov	ver	suppl	y (s	ee po	oint 8	3)	
Seals:													Dire	ect c	urrer		ee po	oint 8	3)	
N = NBR seals for mir			lard)										Dire D12 D24	ect c 2 = ^ 4 = 2	urrer 12 V 24 V		ee po	oint 8	3)	
			lard)										Dire D12 D24 D48	ect c 2 = ^ 1 = 2 3 = 4	urrer 12 V 24 V 18 V	nt	ee po	oint 8	3)	
N = NBR seals for mir V = FPM seals for spe	cial flui	ds	,										Dire D12 D24 D48 D11	ect c 2 = ^ 1 = 2 3 = 4 10 =	urrer 12 V 24 V	nt V	ee po	oint 8	3)	
 N = NBR seals for min V = FPM seals for specific supply (see point I = Internal (not available) 	cial flui s 10 ar	ds 11):-		- TA02	2 - T	FB02	- RK0	02 - S	*2 - :	S*4)			Dire D12 D24 D48 D11 D22	ect c 2 = ^ 4 = 2 3 = 4 10 = 20 =	currer 12 V 24 V 18 V 110 220	v V V			3) (see NC	DTE)
 N = NBR seals for min V = FPM seals for special Pilot supply (see point 	cial flui s 10 ar ble for	ds id 11):- spools	S2 - S4							,			Dire D12 D24 D48 D11 D22 D00	ect c 2 = -2 4 = 2 3 = -2 10 = -2 20 = -1) = \	currer 12 V 24 V 18 V 110 220	V V With	nout			DTE)
 N = NBR seals for mir V = FPM seals for specific supply (see point I = Internal (not availa E = External 	cial flui s 10 ar ble for	ds id 11):- spools	S2 - S4							,			Dire D12 D24 D48 D11 D22 D00 Alte A24	ect c 2 = 2 4 = 2 3 = 2 10 = 20 = 0 = 1 20 =	eurrer 12 V 24 V 18 V 110 220 /alve te cui 24 V	V V with rren	nout t Hz			DTE)
 N = NBR seals for mir V = FPM seals for specific supply (see point I = Internal (not availa E = External 	cial flui s 10 ar ble for ly with :	ds id 11):- spools 30 bar _l	S2 - S4	reduc	cing	valve	, fixe	d adj	ustm	,			Dire D12 D24 D11 D22 D00 Alte A48	ect c 2 =	te cur 24 V 48 V 110 220 /alve	V V with rren - 50 - 50	nout t Hz Hz	coils	(see NC	,
 N = NBR seals for min V = FPM seals for spectrum Pilot supply (see point I = Internal (not availa E = External Z = Internal pilot supp Drainage (see points I = Internal 	cial flui s 10 ar ble for ly with :	ds id 11):- spools 30 bar _l	S2 - S4	reduc	cing	valve	, fixe	d adj	ustm	,			Dire D12 D24 D11 D22 D00 Alte A24 A48 A11 A23	ect c 2 = 2 4 = 2 3 = 4 10 = 2 20 = 1 20 = 1 20 = 1 20 = 1 20 = 2 20 = 20 =	te cui 24 V 48 V 110 220 /alve te cui 24 V 48 V 110 230	v v with - 50 - 50 v - 4 v - 4	hout t Hz Hz 50 Hi 50 Hi	coils z / 12 z / 24	(see NC 20 V - 6 40 V - 6	0 Hz 0 Hz
 N = NBR seals for mir V = FPM seals for spectrum Pilot supply (see point I = Internal (not availa E = External Z = Internal pilot supp Drainage (see points 	cial flui s 10 ar ble for ly with :	ds id 11):- spools 30 bar _l	S2 - S4	reduc	cing	valve	, fixe	d adj	ustm	,			Direc D12 D24 D48 D11 D22 D00 Altec A24 A48 A11 A23 A00	ect c 2 = 2 1 = 2 3 = 2 10 = 2 20 = 1 20	te cur 24 V 48 V 110 220 /alve te cur 24 V 48 V 18 V 110 230 /alve	V V with - 50 - 50 V - 4 V - 4 with	nout t Hz Hz 50 H 50 H	coils z / 12 z / 24 coils	(see NC 20 V - 6	0 Hz 0 Hz
 N = NBR seals for mir V = FPM seals for spectrum Pilot supply (see point I = Internal (not availate = External Z = Internal pilot supp Drainage (see points I = Internal E = External Controls (see point 16 	cial flui s 10 ar ble for ly with 3 10 and	ds spools 30 bar 11): —	S2 - S4 pressure	reduc	cing	valve	e, fixe	d adj	ustm	,			Direc D12 D24 D48 D11 D22 D00 Altec A24 A48 A11 A23 A00 F11	ect c 2 = 2 1 = 2 3 = 2 10 = 2 20 = 1 10 = 1 10 = 2 10 = 2 10 = 1 10 = 1	te cui 24 V 48 V 110 220 /alve te cui 24 V 48 V 110 230	V V with - 50 - 50 V - 4 With V - 6	nout t Hz 50 H 50 H 50 H	coils z / 12 z / 24 coils z	(see NC 20 V - 6 40 V - 6	0 Hz 0 Hz
 N = NBR seals for mir V = FPM seals for spectrum Pilot supply (see point I = Internal (not availate = External Z = Internal pilot supp Drainage (see points I = Internal E = External Controls (see point 16 Omit if not required. 	s 10 ar ble for ly with 3 10 and):	ds spools 30 bar 11):	S2 - S4 pressure	reduc	cing	valve	e, fixe	d adj	ustm	,			Direc D12 D24 D48 D11 D22 D00 Altec A24 A48 A11 A23 A00 F11	ect c 2 = 2 1 = 2 3 = 2 10 = 2 20 = 1 10 = 1 10 = 2 10 = 2 10 = 1 10 = 1	22 V 24 V 24 V 24 V 220 220 220 220 220 220 220 220 220 22	V V with - 50 - 50 V - 4 With V - 6	nout t Hz 50 H 50 H 50 H	coils z / 12 z / 24 coils z	(see NC 20 V - 6 40 V - 6	0 Hz 0 Hz
 N = NBR seals for mir V = FPM seals for specific supply (see point I = Internal (not availa E = External Z = Internal pilot supp Drainage (see points I = Internal E = External Controls (see point 16 Omit if not required. C = Main spool stroke D = Main spool switch 	cial flui s 10 ar ble for ly with 3 10 and): control ing spe	ds spools 30 bar 11):	S2 - S4 pressure	reduc	cing	valve	e, fixe	d adj	ustm	,			Direc D12 D24 D48 D11 D22 D00 Altec A24 A48 A11 A23 A00 F11	ect c 2 = 2 1 = 2 3 = 2 10 = 2 20 = 1 10 = 1 10 = 2 10 = 2 10 = 1 10 = 1	22 V 24 V 24 V 24 V 220 220 220 220 220 220 220 220 220 22	V V with - 50 - 50 V - 4 With V - 6	nout t Hz 50 H 50 H 50 H	coils z / 12 z / 24 coils z	(see NC 20 V - 6 40 V - 6	0 Hz 0 Hz
N = NBR seals for mir V = FPM seals for specific Pilot supply (see point I = Internal (not availance E = External Z = Internal pilot supp Drainage (see points I = Internal E = External Controls (see point 16 Omit if not required. C = Main spool stroke	cial flui s 10 ar ble for ly with 3 10 and): control ing spe	ds spools 30 bar 11):	S2 - S4 pressure	reduc	cing	valve	e, fixe	d adj	ustm	,			Direc D12 D24 D48 D11 D22 D00 Altec A24 A48 A11 A23 A00 F11	ect c 2 = 2 1 = 2 3 = 2 10 = 2 20 = 1 10 = 1 10 = 2 10 = 2 10 = 1 10 = 1	22 V 24 V 24 V 24 V 220 220 220 220 220 220 220 220 220 22	V V with - 50 - 50 V - 4 With V - 6	nout t Hz 50 H 50 H 50 H	coils z / 12 z / 24 coils z	(see NC 20 V - 6 40 V - 6	0 Hz 0 Hz


2 - DSP10 AND DSP11 SPOOLS TYPES



Type **SB***: 1 solenoid side B 2 positions (central + external) with spring centering


Type **TB**: 1 solenoid side B 2 external positions with return spring

Please consult our Technical Department for other types of spools.

3 - IDENTIFICATION CODE FOR HYDRAULIC ACTUATED DIRECTIONAL VALVES

4 - HYDRAULIC FLUIDS

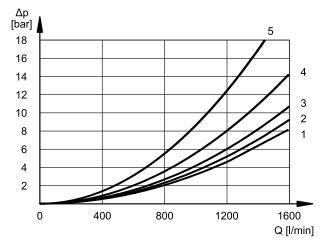
Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code V). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

ACTUATED VALVE

5 - PRESSURE DROPS Ap-Q

(values obtained with viscosity 36 cSt at 50 $^\circ\text{C}$)

5.1 - DSP10 pressure drops


Δр [bar] 3 2 Q [l/min]

FLOW DIRECTIONS SPOOL P→A $P \rightarrow B \mid A \rightarrow T \mid B \rightarrow T$ P→T CURVES ON GRAPH S1, SA1, SB1 S2, SA2, SB2 S3, SA3, SB3 S4, SA4, SB4 TA, TB TA02, TB02 RK

NORMAL POSITION

		FLOW DIRECTIONS							
	SPOOL	P→A	P→B	A→T	B→T	P→T			
			CURVE	ES ON C	GRAPH				
S2				3	4	3			
S3				4	5				
S4		6							

5.2 - DSP11 pressure drops

ACTUATED VALVE

		FLOW	DIREC	TIONS	
SPOOL	P→A	P→B	A→T	B→T	P→T
		CURVE	ES ON C	GRAPH	
S1, SA1, SB1	1	1	1	2	
S2, SA2, SB2	1	1	1	3	
S3, SA3, SB3	1	1	1	3	
S4, SA4, SB4	1	1	1	3	
TA, TB	1	1	1	2	
TA02, TB02	1	1	1	3	
RK	1	1	1	2	

NORMAL POSITION

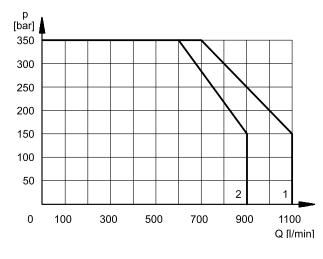
		FLOW DIRECTIONS						
	SPOOL	P→A	P→B	A→T	B→T	P→T		
			CURVE	ES ON C	GRAPH			
S2				2	2	2		
S3				4	4			
S4						5		

TIMES (± 10%)	ENER	GIZED	DE-ENERGIZED		
[ms]	2 Pos	3 Pos	2 Pos	3 Pos	
AC solenoid	90	60	90	60	
DC solenoid	130	100	90	60	

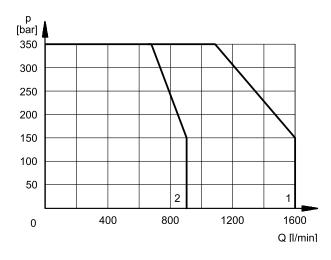
6 - SWITCHING TIMES

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50°C, at viscosity of 36 cSt and with P \rightarrow A / B \rightarrow T connections.

The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.


7 - OPERATING LIMITS

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage, with pilot supply pressure of 10 bar


The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406.1999 class 18/16/13.

Limits refer to the 4-port operation. The operating limits of a 4-port valve in 3-port operation, or with port A or B plugged, or without flow may reduce considerably.

7.1 - DSP10

7.1 - DSP11

DC SOLENOID VALVE

SPOOL	CUF	RVE
SFOOL	P→A	Р→В
S1, SA1, SB1	1	1
S2, SA2, SB2	2	2
S3, SA3, SB3	1	1
S4, SA4, SB4	2	2
TA, TB	1	1
TA02, TB02	1	1
RK	1	1

NOTE: Limits showed for S1, S3, TA / TB and RK spools are determined by the value of the piloting pressure (10 bar).

8 - ELECTRICAL FEATURES

8.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation.

The coil is fastened to the tube by a threaded ring, and can be rotated 360° , to suit the available space.

NOTE 1: In order to further reduce the emissions, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

NOTE 2: The IP65 protection degree is guaranteed only with the connector correctly connected and installed.

VOLTAGE SUPPLY FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	6.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE 1)	In compliance with 2014/30/EU
LOW VOLTAGE	In compliance with 2014/35/EU
CLASS OF PROTECTION Atmospheric agents (IEC 60529) Coil insulation (VDE 0580) Impregnation: DC valve AC valve	IP 65 (NOTE 2) class H class F class H

8.2 - Current and absorbed power for DC solenoid valve

The table shows current and power consumption values of the DC coils.

Using connectors type "D" (see cat. 49 000) with embedded bridge rectifier it is possible to feed DC coils (starting from 48V voltage) with alternating current (50 or 60 Hz), considering a reduction of the operating limits by $5 \div 10\%$ approx.

(values ± 10%)

			Power consumption	Coil code
	[Ω]	[A]	[W]	K1
D12	4.4	2.72	32.7	1903080
D24	18.6	1.29	31	1903081
D48	78.6	0.61	29.5	1903083
D110	436	0.26	28.2	1903464
D220	1758	0.13	28.2	1903465

8.3 - Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, relevant to the different coil types for AC current.

(values ± 5%)								
Suffix	Nominal Voltage	Freq.	Resistance at 20°C	Current consumption at inrush	Current consumption at holding	Power consumption at inrush	Power consumption at holding	Coil Code K1
	[V]	[Hz]	[Ω]	[A]	[A]	[VA]	[VA]	
A24	24	50	1,69	5,81	1,32	139	32	1902830
A48	48	- 50	6,02	3,78	0,86	182	41	1902831
A100	100V-50Hz		23,3	2,11	0,48	211	48	1902836
A100	100V-60Hz		20,0	1,63	0,37	163	37	1902030
A110	110V-50Hz	50/60	33	1,76	0,40	194	44	1902832
A110	120V-60Hz	50/00		1,54	0,35	185	42	1902032
A230	230V-50Hz		135	0,92	0,21	213	48	1902833
A230	240V-60Hz		155	0,79	0,18	190	43	1902033
F110	110	60	28,5	1,45	0,33	160	36	1902834
F220	220		103	0,92	0,21	203	46	1902835

9 - ELECTRIC CONNECTORS

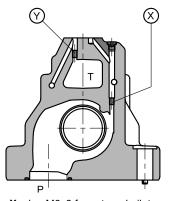
Solenoid valves are delivered without connectors. Connectors can be ordered separately. See catalogue 49 000.

(voluon + E0/)

10 - MAX PRESSURES

Max pressure in P, A, B ports		350
Minimum pilot supply pressure NOTE		10
Max pressure in T line with external drain	bar	350
Max pressure in Y line with external drain		210 (DC) / 160 (AC)
Max pressure in T line with internal drain		210 (DC) / 160 (AC)

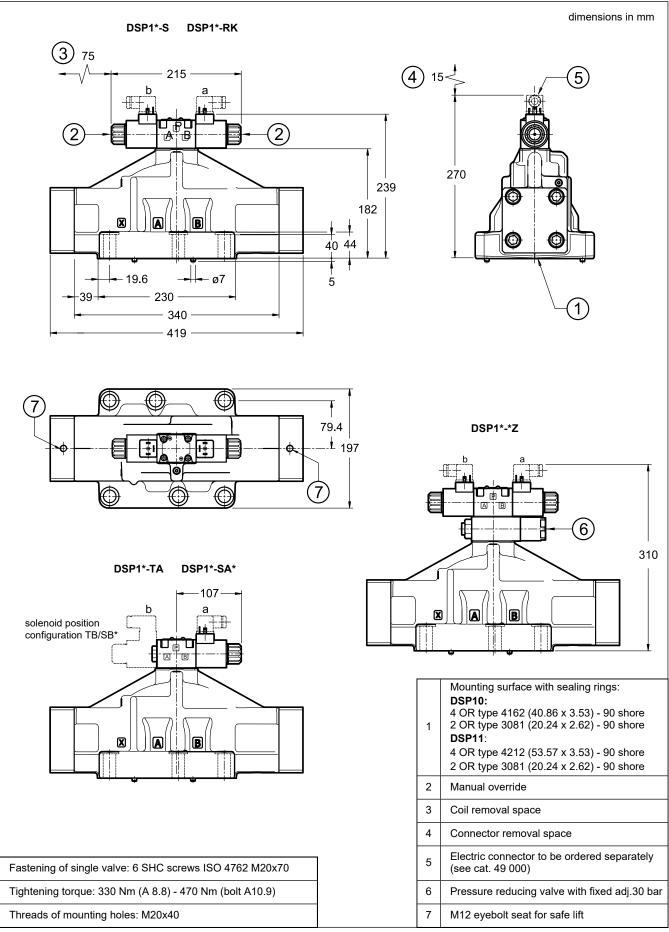
NOTE: The valve needs a difference of at least +10 bar between the pilot pressure and the discharge/drainage pressure In order to work correctly.


11 - PILOT AND DRAIN

The valves with electro-hydraulic actuation (DSP) are available with both pilot supply and drain internal or external. The version with external drain allows a higher back pressure on the return line.

The pilot supply Z type consists of an arrangement with internal piloting and 30 bar supply pressure for the pilot stage by means of a fixed adjustment pressure reducing valve .

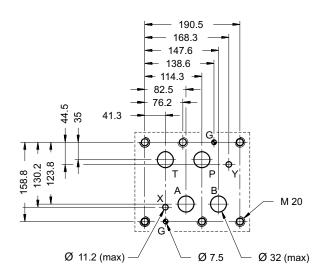
The valves with hydraulic actuation (DSC) are available with external pilot supply and external drain only.

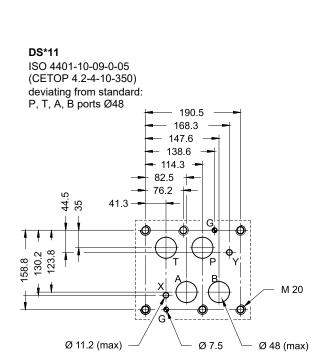

NOTE: The pilot supply and drainage configuration must be chosen when ordering. Subsequent modification is only permitted by authorized experienced operators or at the factory.

X: plug M6x8 for external pilot Y: plug M6x8 for external drain

	TYPE OF VALVE	Plug as	sembly
		Х	Y
IE	internal pilot and external drain	NO	YES
П	internal pilot and internal drain	NO	NO
EE	external pilot and external drain	YES	YES
EI	external pilot and internal drain	YES	NO

12 - OVERALL AND MOUNTING DIMENSIONS FOR DSP10 AND DSP11


dimensions in mm 17 2) Œ 182 X A B € 40 44 - 19.6 ø7 5 230 39 1 340 419 Ć d 瓜 3 79.4 ± 197 3 \bigcirc \oplus Mounting surface with sealing rings B DSC10: 4 OR type 4162 (40.86 x 3.53) - 90 shore 2 OR type 3081 (20.24 x 2.62) - 90 shore 1 DSC11: 4 OR type 4212 (53.57 x 3.53) - 90 shore Fastening of single valve: 6 SHC screws ISO 4762 M20x70 2 OR type 3081 (20.24 x 2.62) - 90 shore Tightening torque: 330 Nm (A 8.8) - 470 Nm (bolts A10.9) 2 Short-circuit subplate 3 Threads of mounting holes: M20x40 M12 eyebolt seat for safe lift


13 - OVERALL AND MOUNTING DIMENSIONS FOR DSC10 AND DSC11

14 - MOUNTING INTERFACES

DS*10

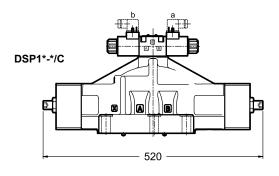
ISO 4401-10-09-0-05 (CETOP 4.2-4-10-350)

15 - INSTALLATION

Configurations with centering and recall springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

Valve fastening takes place by means of screws or tie rods, laying the valve on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing.

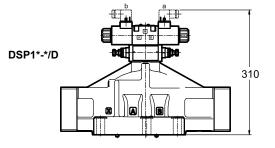
If the minimum values of planarity or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

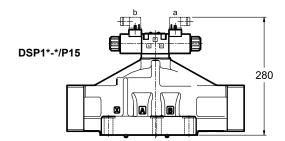


16.1 - Control of the main spool stroke: C

Stroke control for the main spool is possible by means of special side covers so as to vary the maximum clearance opening.

This solution allows control of the flow rate from the pump to the actuator and from the actuator to the outlet, obtaining a double adjustable control on the actuator.


Add the letter C in the identification code to order this version (see point 1).

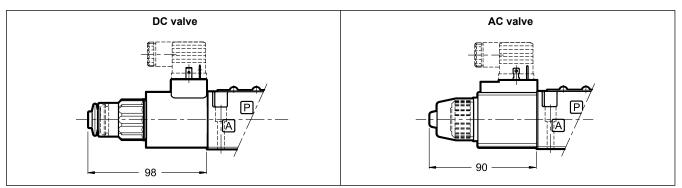


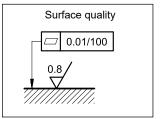
16.2 - Control of the main spool shifting speed: D

By placing a double flow control valve (MERS type) between the pilot solenoid valve and the main stage, the pilot supply flow can be controlled and therefore the changeover smoothness can be varied.

Add the letter **D** in the identification code to order this version (see point 1).

16.3 - Subplate with throttle on line P


It is possible to introduce a subplate with a restrictor of \emptyset 1.5 on line P between the pilot solenoid valve and the main distributor.


Add **P15** in the identification code to order this version (see point 1).

17 - MANUAL OVERRIDE

Whenever the solenoid valve installation may involve exposure to atmospheric agents or use in tropical climates, a boot protected manual override is recommended.

Add /CM at the end of the identification code to order this version (see point 1).

BIBUS SK, s.r.o Trnavská 31, SK-94 901 Nitra

Tel.: 037/ 7777 911 Fax.: 037/ 7777 999 Email: sale@bibus.sk http://www.bibus.sk

DUPLOMATIC MS Spa

via Mario Re Depaolini, 24 | 20015 Parabiago (MI) | Italy T +39 0331 895111 | E vendite.ita@duplomatic.com | sales.exp@duplomatic.com duplomaticmotionsolutions.com