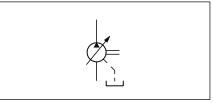

16 300/116 ED

HIGH PRESSURE SELF-REGULATING PUMP FOR OPEN LOOP OPERATION SERIES 10

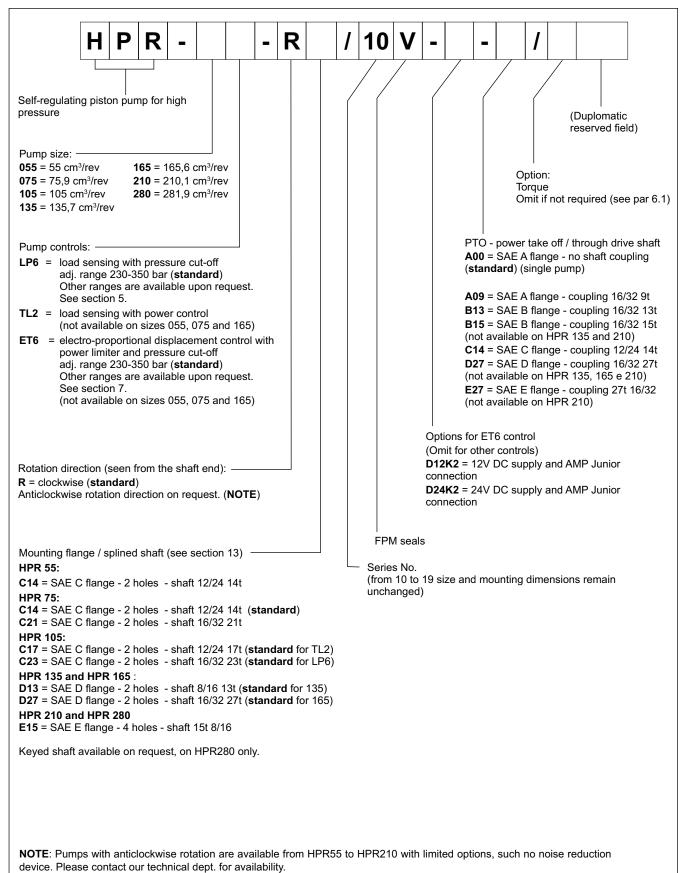
OPERATING PRINCIPLE


- HPR pumps are variable displacement axial-piston pumps with swash plate design, suitable for applications with open circuits.
- Seven frame sizes are available, from 55 up to 280 cm³/rev.
- The pump flow rate is proportional to the shaft speed and to the swash plate angle, which can be continuously modulated. The maximum angle can be limited mechanically by means of an adjustment screw.
- Due to the special design, these pumps are able to operate at high working pressures (420 bar continuously and 500 bar peak)
- All the pumps are equipped with a noise reduction device.

TECHNICAL SPECIFICATIONS

PUMP SIZE		55	75	105	135	165	210	280
Maximum displacement	cm ³ /rev	55	75,9	105	135,7	165,6	210,1	281,9
Maximum operating pressure	bar				420	-		-
Rotation speed and operating flow rate				see table	e 3 - Perfor	mances		
Rotation direction					clockwise			
Loads on the shaft: axial load radial load	N				2000 on request			
Hydraulic connection		fl	ange fitting	js - SAE 30	000 suction	/ SAE 600	00 pressure	e
Type of mounting					SAE J744			
Mass (empty single pump)	kg	39	39	50	65	89	116	165

Ambient temperature range	°C	-15 / +70
Fluid temperature range	°C	-20 / +80
Fluid recommended viscosity	cSt	15 ÷ 30
Fluid contamination degree (ISO 4406:1999)		18/16/13


HYDRAULIC SYMBOL

NOTE: Values referring to 1 bar absolute on suction port.

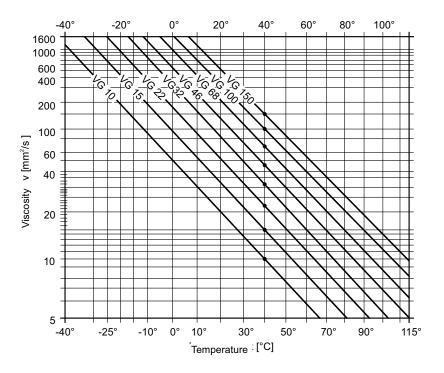
1 - IDENTIFICATION CODES

1.1 - Identification code for single pumps and pumps with power take-off

2 - HYDRAULIC FLUID

2.1 - Fluid type

Use mineral oil based hydraulic fluids HLP with anti-foam and antioxidant additives according to the DIN 51524-2 standard. For use with other types of fluid, keep in mind the limitations shown here below or consult our technical department for authorization of use.


2.2 - Fluid viscosity

The operating fluid viscosity must be within the following range:

minimum viscosity	10 cSt	referred to a maximum temperature of 80°C for the drain line
optimum viscosity	15 ÷ 30 cSt	referred to the fluid operating temperature in the tank.
maximum viscosity	1000 cSt	limited to the cold start-up of the pump only, which has to be carried out with the circuit at
		minimum pressure.
When selecting the fluid ty	pe, check its viscosity	is within the range specified above at the operating temperature.

Recommended viscosity values are indicated in the table and diagram.

Operating temperature [°C]	Viscosity class [cSt at 40°C]
from 30 to 40	22
from 40 to 60	32
from 60 to 80	46 or 68

2.3 - Degree of fluid contamination

In order to guarantee long-term proper function and high efficiency of the hydraulic pumps the purity of the operating fluid must comply with the following class according to the ISO 4406:1999. High purity oil can extend the service time of the hydraulic system significantly.

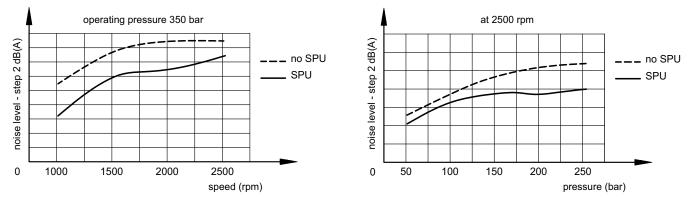
For reliable proper function and long service life 18/16/13

Minimum requirements	20/18/15
Commissioning	The minimum purity requirement for the hydraulic oil is based on the most sensitive system component. For commissioning we recommend a filtration in order to achieve the required purity
Filling and operation of hydraulic systems	The required purity of the hydraulic oil must be ensured during filling or topping up. When drums, canisters or large-capacity tanks are used the oil generally needs to be filtered.
	We recommend the implementation of suitable measures (e.g. filters) to ensure the required minimum purity of the oil is also achieved during these tasks.

3 - PERFORMANCES

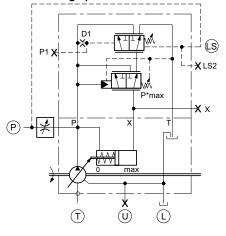
(values obtained with mineral oil with a viscosity of 36 cSt at 50°C)

PUMP SIZE		055	075	105	135	165	210	280
Max displacement	cm³/rev	55	75.9	105	135.7	165.6	210.1	281.9
Max flow: - at 1500 rpm - at max rotation speed	l/min	82.5 148.5	113.9 189.8	157.5 262.5	203.5 318.9	248.2 364.1	315.5 441.2	422.9 563.8
Minimum operating speed	rpm				500			
Maximum operating speed	rpm	2700	2500	2500	2350	2200	2100	2000
Max delivery pressure: - continuous - intermittent	bar				420 500			
Inlet pressure:	bar abs		1	from 0.8 up	to 20 bar (:	see par. 12))	
Max housing pressure	bar				1,5			
Max power (∆p = 420 bar): - at 1500 rpm - at max rotation speed	kW	57.8 104	79.7 132.8	110.3 183.8	142.5 223.2	173.8 254.9	220.6 308.8	296 394.7
Max absorbed torque: ∆p =100 bar ∆p = 420 bar	Nm	87 368	121 507	167 702	216 907	263 1106	334 1404	446 1884
Moment of inertia on the shaft	kgm ² x10 ⁻²	0,79	0,79	1,44	2,15	3,41	4,68	8,34


4 - NOISE REDUCTION DEVICE

All the HPR-02 hydraulic pumps are optimized with respect to pulsation characteristics and therefore noise generation. In addition to common primary measures such as exclusive use of noise-optimized port plates, the SPU noise reduction device is available.

Without affecting the functionality and efficiency of the pump, this system reduces pressure noise by up to 70%, irrespective of pressure, speed or temperature.


The SPU system is adaptive over the entire operating range. No setting up or maintenance is required.

Comparison of noise pressure levels for a HPR 75 pump with and without SPU



5 - LP6 - LOAD SENSING WITH PRESSURE CUT-OFF CONTROL

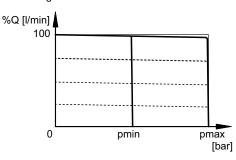
Load sensing operation

Pressure control operation

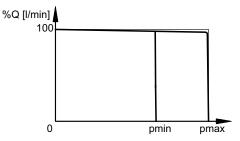
Remote pressure operation

This load sensing control allows the pump flow rate to be regulated according to the Δp pressure drop measured on both the sides of a throttle valve installed on the working line.

NOTE: The connection pipe between the LS port and the flow line downstream the restrictor (or valve) is always in customer's charge. The restrictor is not supplied.


The maximum operating pressure can be set manually adjusting the P*max valve.

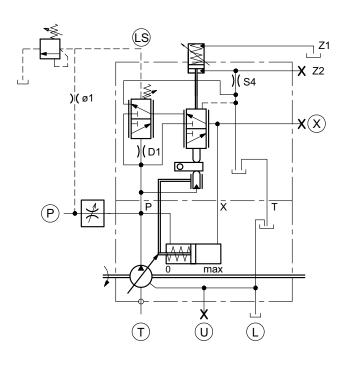
LP* FEATURES:


- pressure adjustment range: LP6 = 230 ÷ 350 (standard) default setting = 350 bar

> LP5 = 125 ÷ 230 (upon request) LP7 = 350 ÷ 420 (upon request)

- differential pressure regulating range = 16 ÷ 27 bar - default setting = 20 bar

Bypassing both P and LS ports with an external connection and an orifice (both in customer's charge) the pump will operate as pressure control that works at maximum displacement up to the set pressure P*max.



It is possible to create a remote pressure control by means of both an external pressure relief valve and an orifice (both in customer's charge) as shown in the schema.

This configuration allows to regulate remotely the maximum pressure up to P*max. When the pressure it's lower than the set value P*max the pump is at its maximum displacement.

> Q [l/min] 0 P*max

6 - TL2 - LOAD SENSING WITH POWER CONTROL

The TL2 control is available for pumps HPR105, HPR135, HPR210 and HPR280.

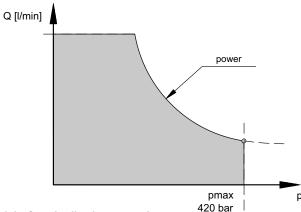
This control combines the load sensing function typical of LP control with a power limiter with hyperbolic characteristic. Such limiter keeps the pump torque at a constant level by changing the displacement according to the delivery pressure, so that the absorbed power remains unchanged (at constant pump speed).

The Z1 port must always be connected to the tank separately and without back pressure. The Z2 port is plugged.

NOTE: The pipe connection between the LS port and the delivery of the pump, the orifice and the external pressure relief valve are always charged to the customer.

NOTE: The feature of the pressure cut-off is not present on this control, it is necessary to provide suitable external valve, as shown in the diagram at side.

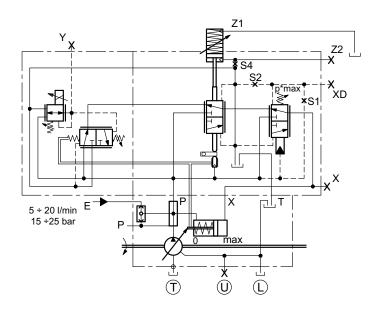
TL2 FEATURES:


- differential pressure adjustment range = 16 ÷ 27 bar default setting = 20 bar

- pressure adjustment range for torque regulation:

- HPR105, HPR135 = 60 ÷ 250 bar HPR210, HPR280 = 80 ÷ 250 bar
- default setting = 250 bar

The power control is factory set. The setting value has to be specified with the order, by stating into the identification code the Nm torque value.


Start of the regulation: looking at values table below.

6.1 - Standardized	torque values
--------------------	---------------

				ELECT	RICAL MO	TOR 4 PO	LES (at 50	Hz)			
PUMPS	Power [kW]	18.5	22	30	37	45	55	75	90	110	132
PUMPS	N [rpm]					15	500				
	torque [Nm]	118	140	191	236	286	350	477	573	700	840
105		63	75	103	127	154	189	-	-	-	-
135	start of pressure	-	-	80	98	119	146	199	239	-	-
210	regulation [bar]	-	-	-	-	-	94	129	154	188	226
280		-	-	-	-	-	-	96	115	140	169

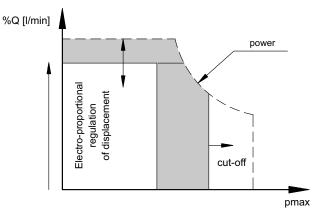
7 - ET6 - ELECTRO-PROPORTIONAL DISPLACEMENT CONTROL WITH POWER LIMITER AND REMOTE PRESSURE CUT-OFF

The ET6 control is available for pumps HPR105, HPR135, HPR210 and HPR280.

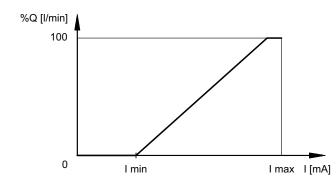
It combines a pump displacement regulation proportional to the current supplied to the solenoid with a constant input torque control. The limitation of maximum pressure is also available.

With no current the pump is in null displacement, so it is required a supply pressure on port E (located on the pump body) for the start of the control.

Once the P port is pressurized, then the shuttle valve on the pump excludes the piloting of port E and picks the fluid directly from the pump delivery line.


ET6 FEATURES:

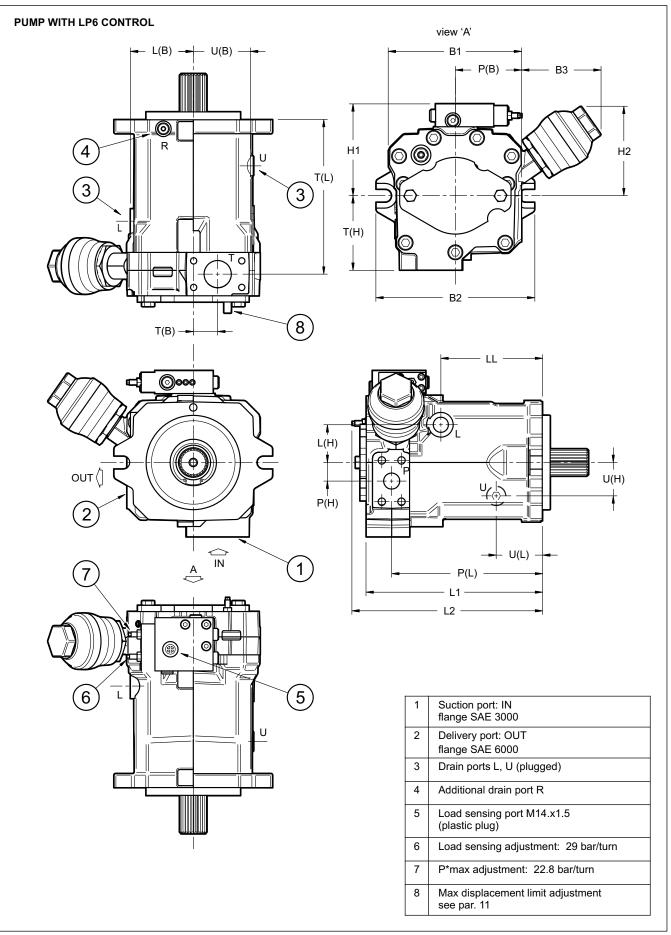
- pressure adjustment range:


ET6 = 230 ÷ 350 (standard) default setting = 350 bar

> **ET5** = 125 ÷ 230 (on request) **ET7** = 350 ÷ 420 (on request)

 pressure adjustment range for torque regulation: HPR105, HPR135 = 60 ÷ 250 bar HPR210, HPR280 = 80 ÷ 250 bar default setting = 250 bar

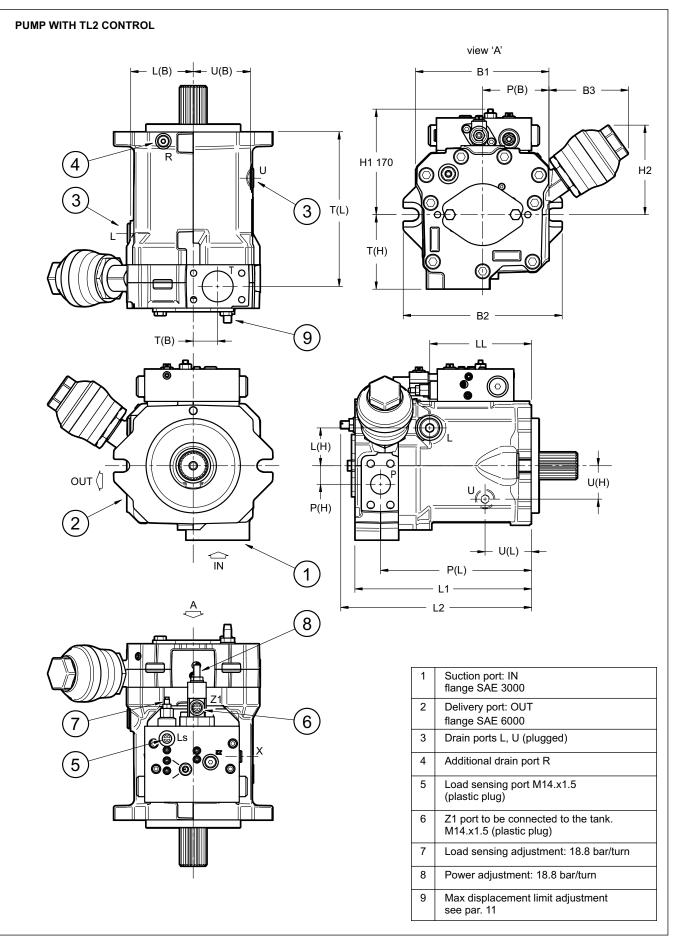
		D12K2	D24K2
Nominal voltage	V CC	12	24
Coil connection	AN	/IP Junior (2	2 pin)
Power consumption	w	1:	5,6
Nominal current	A	1,2	0,6
Relative duty cycle		100%	
Protection class (EN 60529)		IP 67	


regulation	pump	ET1	ET2
	105, 135	464 mA	232 mA
l min	210	490 mA	245 mA
	280	524 mA	262 mA
l max	ALL	1200 mA	600 mA

8 - PUMPS WITH LP6 CONTROL - OVERALL DIMENSIONS

							di
PUMP	55	75	105	135	165	210	280
Ø of flange		127		15	2.4	16	5.1
L1	220.3	231.8	262	284.5	333.1	348	403
L2	259.3	270.8	301	323.5	372.1	387	442
H1	137	139	140.5	148.5	165.5	171.5	189
H2	146	146	136	145.5	152.4	143.5	238
B1	11	190.3	199.6	216	251.5	268	306.1
B2	20	08	207	256	269	268.8	314.5
B3	120	111	122	129	128.9	126.5	125.1
PUMP	55	75	105	135	165	210	280
P delivery (SAE)	3/	/4"	1"	1	/4"	1	/2"
P (L)	182.8	194.3	218	243.5	283.1	295	344.5
P (H)	23	3.5	26	30	43	27	46
Р (В)	91	90.5	100	107	134.5	134.5	149.5
T suction (SAE)	11	/2"	2"	2"	21⁄2"	3"	31⁄2"
T (L)	189.8	201.3	227	249.5	285.6	298	344.5
Т (Н)	g	94	103.5	120	119	149	167
Т (В)	2	!1	25	30	0	5	7
L, U drain ports		M22x1.5			M27x2		M33x2
L (L)	112.8	124.3	142	164	180.6	197.5	215.5
L (H)	5	2	53	61	65	71.5	80.5
L (B)	86	6.5	85	101.5	108	128	145
U (L)	7	2	72	74.5	81.1	83	109
U (H)	4	4	54	54	62	60	68
U (B)	78	3.5	92.5	92.5	101	118	129.5
R - additional drain port			M14x1	.5, 13 deep	(NOTE)		

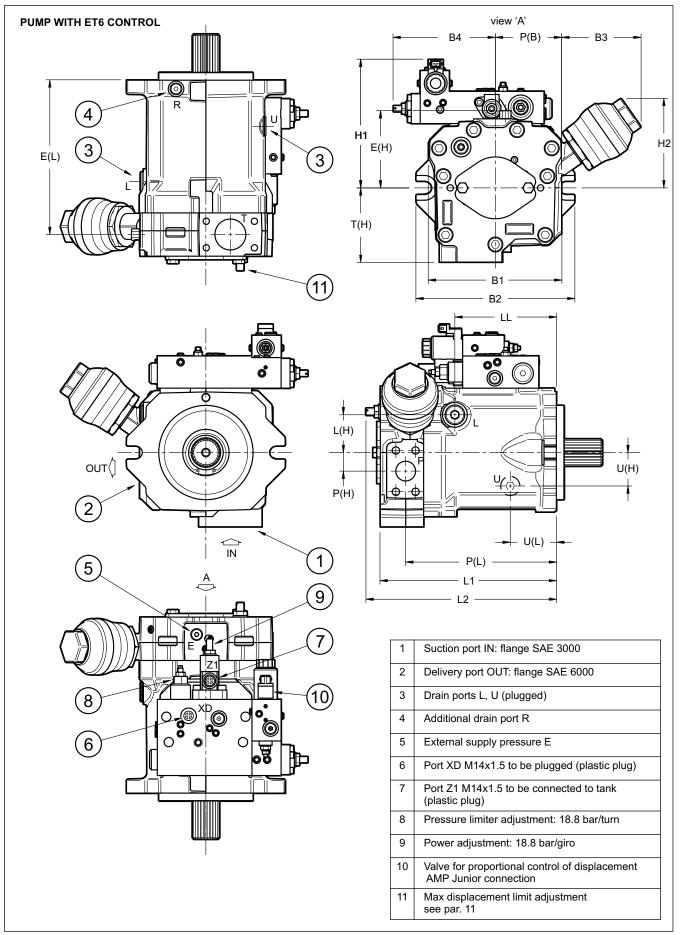
NOTE: If the pump is set vertically with shaft upward then the R port is strictly to be connected. The port R is located on the flange, at side (like U port) or bottom (like suction port) depending on the pump shape.



9 - SINGLE PUMPS WITH TL2 CONTROL - OVERALL DIMENSIONS

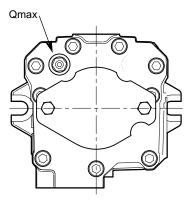
PUMP	105	135	210	280
Ø flange	127	152.4	165.1	165.1
L1	262	284.5	348	403
L2	301	323.5	387	442
H1	163	170	193	210.5
H2	134	144	144.3	200.7
H3	104.5	104	135	135
B1	194.5	214.8	266.3	314.5
B2	208	256.5	269	272
B3	118	106.7	102.4	119.5
PUMP	105	135	210	280
P delivery (SAE)	1"	1¼"	1	1/2"
P (L)	218	243.5	295	344.5
Р (Н)	26	30	27	46
Р (В)	100	107	144.5	154.1
T suction (SAE)	2"	2"	3"	31⁄2"
T (L)	227	249.5	298	344.5
Т (Н)	104	120	149	167
Т (В)	25	39.5	27	44
L, U drain ports	M22x1.5	M27x2	M27x2	M33x2
L (L)	142	164	191	215.5
L (H)	53	61	97.5	80.5
L (B)	92.5	101	128	129.5
U (L)	72	74.5	83	109
U (H)	54	54	60	68
				4 = 0 =
U (B)	85	92	118	159.5

NOTE: If the pump is set vertically with shaft upward then the R port is strictly to be connected. The port R is located on the flange, at side (like U port) or bottom (like suction port) depending on the pump shape.



10 - SINGLE PUMPS WITH ET6 CONTROL - OVERALL DIMENSIONS

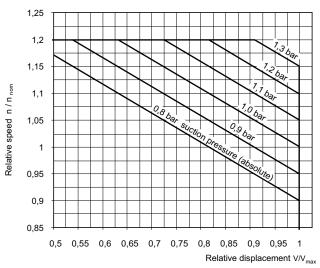
PUMP	105	135	210	280
Ø flange	127	152.4	165.1	165.1
L1	262	284.5	348	403
L2	301	323.5	387	442
L3	108.9	82.8	138.5	168
H1	200.5	207.5	230.5	248
H2	134	144	144.3	200.7
H3	104.5	104	135	135
B1	194.5	214.8	266.3	314.5
B2	208	256.5	269	272
B3	118	106.7	102.4	119.5
B4	165	165	165	146.5


PUMP	105	135	210	280	
P delivery (SAE)	1"	1¼"	1!	11⁄2"	
P (L)	218	243.5	295	344.5	
P (H)	26	30	27	46	
P (B)	100	107	144.5	154.1	
T suction (SAE)	2"	2"	3"	31⁄2"	
T (L)	227	249.5	298	344.5	
Т (Н)	104	120	149	167	
Т (В)	25	39.5	27	44	
L, U drain ports	M22x1.5	M27x2	M27x2	M33x2	
L (L)	142	164	191	215.5	
L (H)	53	61	97.5	80.5	
L (B)	92.5	101	128	129.5	
U (L)	72	74.5	83	109	
U (H)	54	54	60	68	
U (B)	85	92	118	159.5	
R - additional drain port	ſ	M14x1.5 dee	p 13 (NOTE)	
E - external supply pressure		M14	.x1.5		
E (L)	240.8	249.5	303	375	
E (H)	135.6	142.6	165.6	183.1	
E (B)	15	16	20	20	

NOTE: If the pump is set vertically with shaft pointing upward then the R port is strictly to be connected. The port R is located on the flange, at side (like U port) or bottom (like suction port) depending on the pump shape.

11 - MAXIMUM DISPLACEMENT LIMITATION

The max angle for the swash plate is adjustable. The adjustment screw is placed on pump back. Values for pumps with rotary clockwise.



	Q max (cm³/turn)	displacement range (cm ³)
55	4.9	35 - 55
75	5.2	50 - 75
105	6.2	75 - 105
135	7	105 - 135
165		135 - 165
210	9.4	165 - 210
280		210 - 280

12 - INSTALLATION AND START-UP

It is recommended to install the pump below the oil level and horizontally as shown. For installations above oil level and / or vertically, contact our. technical dept. The maximum allowed input speed is also directly dependent on the suction pressure.

The temperature should not exceed 80 °C in any part of the system.

Suction

- Provide suction/inlet line continuously rising towards the tank.
- Avoid cavitation events providing adequate flooded suction or pressurized inlet should be of adequate supply as to guard against cavitation.
- On designing the suction line attention must be paid to a straight, short conduct largely avoiding bends. If bends are required, the bending radius must be as large as possible. The suction inlet in the hydraulic tank must have as largest section as possible.
- The suction line itself must be installed in such a way that it ends more than ≥100 mm above the tank bottom. In order to enlarge the entry diameter of the suction boss in the hydraulic tank, its end must be cut under 45°. The distance between entry and oil surface must be large enough to avoid air suction, recommended ≥ 200 mm.
- Take care of the tightness of the pipe/hose so that air is not drawn in.

Case drain

- Positive venting is vital for the correct operation of the hydraulic system.
- The pump must be always filled with oil, both at start-up and during stops, also long term stops.
- All case drain lines must be mounted continuously rising towards the tank. This allows any entrapped air to escape freely from the pump housing.
- The highest case drain port of the pump housing (ports U, L and R) must be connected separately to the tank. As a rule drain lines have to be kept separate from the main return line. The drain line has to enter the hydraulic tank below the oil level.
- The dimension must be ample enough that even at low temperatures the return flow pressure of the leak oil will be near zero. The case pressure (build-up) should not rise and stay higher than 2.5 bar(absolute) during operation.

Piping

- Pipe work should be seamless drawn precision steel tube or hoses of suitable pressure rating.
- During installation, attention should be paid to cleanliness. The pipes must be deburred, washed and blown through.
- Scaled or rusted pipes must be scoured and then neutralized -Hoses must be brushed and flushed through when contaminated.

Cleanliness

 Oil tank and installation have to be checked again for cleanliness before the hydraulic medium is added. This procedure has to be performed immediately before pouring takes place. It may even be expedient to flush the entire installation! Make sure that the pressure fluid corresponds to the required grade of cleanliness.

Drive rotation

• Before starting the engine make sure that the HPR-02 pump will be driven with the correct direction of rotation. With electric motors, it must be checked that the electrical connections are correct.

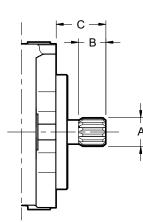
Filling pump and circuit:

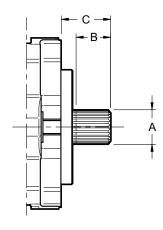
- The initial filling of the system must be carried out in such a way that all of the air can escape from the high pressure circuit and from the pump housing before the hydraulic units are operated.
- The suction port and the casing of the HPR-02 are not related to each other. Before the hydraulic components may be exposed to load, the entire circuit must be filled and vented.

• Manually fill the HPR-02 pump at the most accessible case drain port with filtered oil. Manually fill the high pressure line with filtered oil. Fill the oil tank to the maximum level with filtered oil and fill all motor housings to the maximum level via the most accessible case drain port with filtered oil.

Start-up

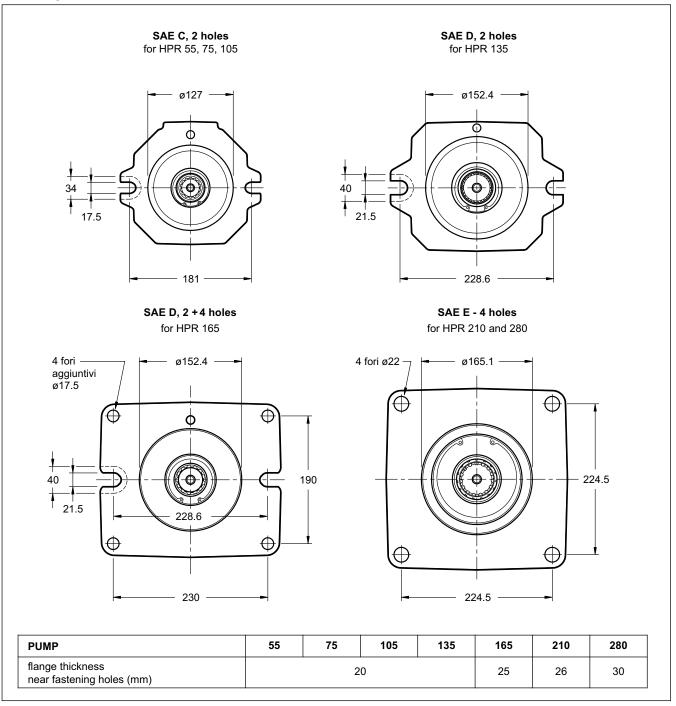
- If there is an on/off valve in the suction line, make sure it is completely open before starting the engine.
- Start the electric motor and allow the HPR-02 to rotate for 5 seconds.
- Switch engine off and check fluid level in the tank. Top off if necessary. Before restarting the engine, check the installation for tightness.
- Repeat previous steps at least four more times.
- Start the electric motor, then slowly actuate the pump function to allow the pump to increase to maximum displacement. Leave the function fully actuated for 30 seconds, and then repeat the step three times.

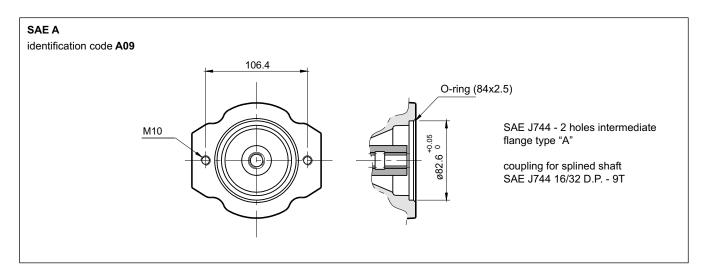

13 - FLANGES AND SHAFTS

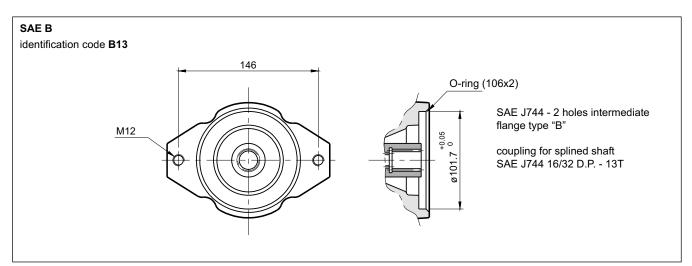

13.1 - Mounting flanges and splined shafts available as standard (SAE J774)

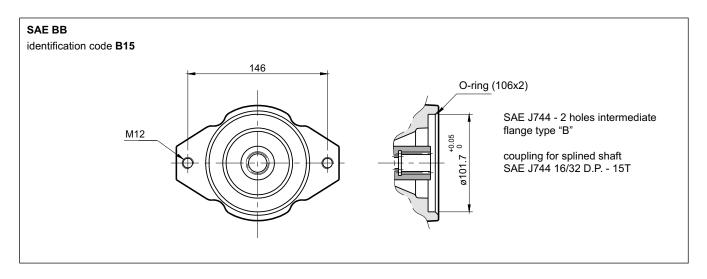
- Warm the system up by steadily increasing the pressure so as to allow any air to be purged from the fluid.
- Check the HPR-02 stand-by pressure, load sense margin pressure, pressure compensator setting (if applicable) and maximum flow setting when the hydraulic oil reaches its normal operating temperature.
- Check the oil level in the tank and refill with filtered oil if necessary before delivery of the machine.

			· · ·					
PUMP	55	75	105	135	165	210	280	
Front mounting flange		SAE C - 2 holes			SAE D - 2 holes (NOTE)		SAE E - 4 holes	
Pilot diameter	127		27	152,4		165,1		
Shaft	SA 14 t 12	E C /24 DP	SAE C-C 17 t 12/24 DP	SAE 13 t 8/*		SAI 15t 8/1		
	-	21t 16/32	23t 16/32	27t 1	6/32	-		

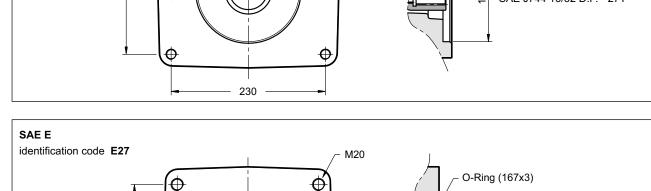

NOTE: HPR165 has also 4 additional holes Ø17.5


Shaft	SAE-J744	Туре	Α	В	с				
	code				HPR 55	HPR 75	HPR 105	HPR 135 /165	HPR 210 / 280
14 T 12/24 DP	SAE C	with undercut	31.22	30	54	55	_		
21t 16/32		no undercut	34.51	39.5					
17 t 12/24 DP	SAE C-C	with undercut	37.68	30			55	_	_
23t 16/32		no undercut	37.68	38.5					
13 t 8/16 DP	SAE D	with undercut	43.71	50	-	-		75	
27t 16/32		no undercut	44.05	62			-	10	
15t 8/16 DP	SAE F	no undercut	50.06	58				-	75


13.2 - Flanges



14 - PTO - POWER TAKE OFF


The HPR pumps can be supplied with a power take-off SAE J744 type, which allows coupling with other pumps models. As for identification see par. 1 "Identification code".

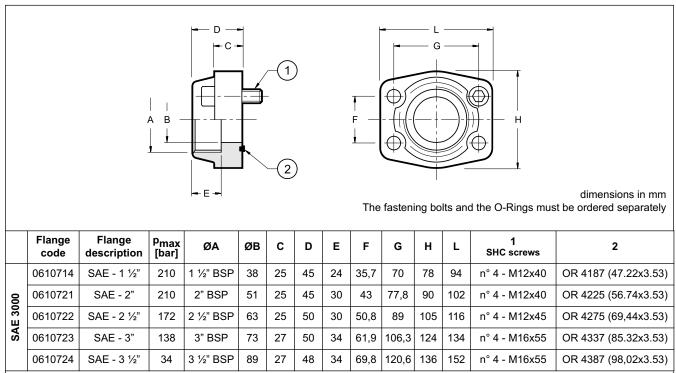
Φ

224.5

SAE J744 - 4 holes intermediate flange type "E"

coupling for splined shaft SAE J744 16/32 D.P. - 27T

+0.05 0


65.

224.5

θ

	T - S	UCTION (
Pump	nominal size	A mm	B mm	C mm	D Threading and depth mm	
55, 75	1 1⁄2"	38	69.9	35,7	M12x16	
105	2"	50	77,8	42.9	M12x16	_ ► C - -
135	2"	50	77,8	42.9	M12x17	
165	2 1⁄2"	64	88,9	50,8	*M12x21.5	
210	3"	76.2	106,4	61,9	M16x28.5	
280	3 1⁄2""	90	120.7	69,9	M16x29	А — (—) — В
	P - DE	ELIVERY	(SAE 6000)		
Pump	nominal size	A mm	B mm	C mm	D Threading and depth mm	
			50,8	23,5	M10x17	
55, 75	3/4"	19	50,0	· ·		
•	3/4" 1"	19 21	57,2	27,8	M12x17	
55, 75			,	-	M12x17 M14x19	
55, 75 105	1"	21	57,2	27,8		
55, 75 105 135	1" 1 ¼"	21 32	57,2 66.7	27,8 31.8	M14x19	

16 - CONNECTION FLANGES

0770075

0770092

0770106

0773462

6000

SAE

SAE - 3/4"

SAE - 1"

SAE - 1 1/4"

SAE - 1 1/2"

420

420

420

420

3/4" BSP

1" BSP

1 1⁄4" BSP

1 1/2" BSP

19

25

32

38

21

25

27

30

35

42

45

94

22

24

25

26

23,8

27,7

31,7

36,5

50,8

57,1

66,7

79,3

55

65

78

94

71

81

95

112

OR 4100 (24.99x3.53)

OR 4131 (32.93x3.53)

OR 4150 (37.69x3.53)

OR 4187 (47.22x3.53)

n° 4 - M10x35

n° 4 - M12x40

n° 4 - M14x45

n° 4 - M16x55

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com